Maria Cristina Mariani - Data Science in Theory and Practice

Здесь есть возможность читать онлайн «Maria Cristina Mariani - Data Science in Theory and Practice» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science in Theory and Practice: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science in Theory and Practice»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

DATA SCIENCE IN THEORY AND PRACTICE delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs,
will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Data Science in Theory and Practice — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science in Theory and Practice», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page Data Science in Theory and Practice Techniques for Big Data Analytics and Complex Data Sets Maria Cristina Mariani University of Texas, El Paso El Paso, United States Osei Kofi Tweneboah Ramapo College of New Jersey Mahwah, United States Maria Pia Beccar-Varela University of Texas, El Paso El Paso, United States

3 Copyright

4 List of Figures

5 List of Tables

6 Preface

7 1 Background of Data Science1.1 Introduction 1.2 Origin of Data Science 1.3 Who is a Data Scientist? 1.4 Big Data

8 2 Matrix Algebra and Random Vectors2.1 Introduction 2.2 Some Basics of Matrix Algebra 2.3 Random Variables and Distribution Functions 2.4 Problems

9 3 Multivariate Analysis3.1 Introduction 3.2 Multivariate Analysis: Overview 3.3 Mean Vectors 3.4 Variance–Covariance Matrices 3.5 Correlation Matrices 3.6 Linear Combinations of Variables 3.7 Problems

10 4 Time Series Forecasting4.1 Introduction 4.2 Terminologies 4.3 Components of Time Series 4.4 Transformations to Achieve Stationarity 4.5 Elimination of Seasonality via Differencing 4.6 Additive and Multiplicative Models 4.7 Measuring Accuracy of Different Time Series Techniques 4.8 Averaging and Exponential Smoothing Forecasting Methods 4.9 Problems

11 5 Introduction to R5.1 Introduction 5.2 Basic Data Types 5.3 Simple Manipulations – Numbers and Vectors 5.4 Problems

12 6 Introduction to Python6.1 Introduction 6.2 Basic Data Types 6.3 Number Type Conversion 6.4 Python Conditions 6.5 Python File Handling: Open, Read, and Close 6.6 Python Functions 6.7 Problems

13 7 Algorithms7.1 Introduction 7.2 Algorithm – Definition 7.3 How to Write an Algorithm 7.4 Asymptotic Analysis of an Algorithm 7.5 Examples of Algorithms 7.6 Flowchart 7.7 Problems

14 8 Data Preprocessing and Data Validations8.1 Introduction 8.2 Definition – Data Preprocessing 8.3 Data Cleaning 8.4 Data Transformations 8.5 Data Reduction 8.6 Data Validations 8.7 Problems

15 9 Data Visualizations9.1 Introduction 9.2 Definition – Data Visualization 9.3 Data Visualization Techniques 9.4 Data Visualization Tools 9.5 Problems

16 10 Binomial and Trinomial Trees10.1 Introduction 10.2 The Binomial Tree Method 10.3 Binomial Discrete Model 10.4 Trinomial Tree Method 10.5 Problems

17 11 Principal Component Analysis11.1 Introduction 11.2 Background of Principal Component Analysis 11.3 Motivation 11.4 The Mathematics of PCA 11.5 How PCA Works 11.6 Application 11.7 Problems

18 12 Discriminant and Cluster Analysis12.1 Introduction 12.2 Distance 12.3 Discriminant Analysis 12.4 Cluster Analysis 12.5 Problems

19 13 Multidimensional Scaling13.1 Introduction 13.2 Motivation 13.3 Number of Dimensions and Goodness of Fit 13.4 Proximity Measures 13.5 Metric Multidimensional Scaling 13.6 Nonmetric Multidimensional Scaling 13.7 Problems

20 14 Classification and Tree‐Based Methods14.1 Introduction 14.2 An Overview of Classification 14.3 Linear Discriminant Analysis 14.4 Tree‐Based Methods 14.5 Applications 14.6 Problems

21 15 Association Rules15.1 Introduction 15.2 Market Basket Analysis 15.3 Terminologies 15.4 The Apriori Algorithm 15.5 Applications 15.6 Problems

22 16 Support Vector Machines16.1 Introduction 16.2 The Maximal Margin Classifier 16.3 Classification Using a Separating Hyperplane 16.4 Kernel Functions 16.5 Applications 16.6 Problems

23 17 Neural Networks17.1 Introduction 17.2 Perceptrons 17.3 Feed Forward Neural Network 17.4 Recurrent Neural Networks 17.5 Long Short‐Term Memory 17.6 Application 17.7 Significance of Study 17.8 Problems

24 18 Fourier Analysis18.1 Introduction 18.2 Definition 18.3 Discrete Fourier Transform 18.4 The Fast Fourier Transform (FFT) Method 18.5 Dynamic Fourier Analysis 18.6 Applications of the Fourier Transform 18.7 Problems

25 19 Wavelets Analysis19.1 Introduction 19.2 Discrete Wavelets Transforms 19.3 Applications of the Wavelets Transform 19.4 Problems

26 20 Stochastic Analysis20.1 Introduction 20.2 Necessary Definitions from Probability Theory 20.3 Stochastic Processes 20.4 Examples of Stochastic Processes 20.5 Measurable Functions and Expectations 20.6 Problems

27 21 Fractal Analysis – Lévy, Hurst, DFA, DEA21.1 Introduction and Definitions 21.2 Lévy Processes 21.3 Lévy Flight Models 21.4 Rescaled Range Analysis (Hurst Analysis) 21.5 Detrended Fluctuation Analysis (DFA) 21.6 Diffusion Entropy Analysis (DEA) 21.7 Application – Characterization of Volcanic Time Series 21.8 Problems

28 22 Stochastic Differential Equations22.1 Introduction 22.2 Stochastic Differential Equations 22.3 Examples 22.4 Multidimensional Stochastic Differential Equations 22.5 Simulation of Stochastic Differential Equations 22.6 Problems

29 23 Ethics: With Great Power Comes Great Responsibility23.1 Introduction 23.2 Data Science Ethical Principles 23.3 Data Science Code of Professional Conduct 23.4 Application 23.5 Problems

30 Bibliography

31 Index

32 End User License Agreement

List of Tables

1 Chapter 2 Table 2.1 Examples of random vectors.

2 Chapter 3 Table 3.1 Ramus Bone Length at Four Ages for 20 Boys.

3 Chapter 4 Table 4.1 Time series data of the volume of sales of over a six hour period. Table 4.2 Simple moving average forecasts. Table 4.3 Time series data used in Example 4.6. Table 4.4 Weighted moving average forecasts. Table 4.5 Trend projection of weighted moving average forecasts. Table 4.6 Exponential smoothing forecasts of volume of sales. Table 4.7 Exponential smoothing forecasts from Example 4.9.Table 4.8 Adjusted exponential smoothing forecasts.

4 Chapter 6Table 6.1 Numbers.Table 6.2 Files mode in Python.

5 Chapter 7Table 7.1 Common asymptotic notations.

6 Chapter 9Table 9.1 Temperature versus ice cream sales.

7 Chapter 12Table 12.1 Events information.Table 12.2 Discriminant scores for earthquakes and explosions groups.Table 12.3 Discriminant scores for Lehman Brothers collapse and Flash crash ...Table 12.4 Discriminant scores for Citigroup in 2009 and IAG stock in 2011.

8 Chapter 13Table 13.1 Data matrix.Table 13.2 Distance matrix.Table 13.3 Stress and goodness of fit.Table 13.4 Data matrix.

9 Chapter 14Table 14.1 Models' performances on the test dataset with 23 variables using ...Table 14.2 Top 10 variables selected by the Random forest algorithm.Table 14.3 Performance for the four models using the top 10 features from mo...

10 Chapter 15Table 15.1 Market basket transaction data.Table 15.2 A binary картинка 1representation of market basket transaction data.Table 15.3 Grocery transactional data.Table 15.4 Transaction data.

11 Chapter 16Table 16.1 Models performances on the test dataset.

12 Chapter 18Table 18.1 Percentage of power for Discover data.Table 18.2 Percentage of power for JPM data.Table 18.3 Percentage of power for Microsoft data.Table 18.4 Percentage of power for Walmart data.

13 Chapter 19Table 19.1 Determining картинка 2and картинка 3for картинка 4.Table 19.2 Percentage of total power (energy) forAlbuquerque, New Mexico (A...Table 19.3 Percentage of total power (energy) forTucson, Arizona (TUC) seis...

14 Chapter 21Table 21.1 Moments of the Poisson distribution with intensity картинка 5.Table 21.2 Moments of the картинка 6distribution.Table 21.3 Scaling exponents of Volcanic Data time series.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science in Theory and Practice»

Представляем Вашему вниманию похожие книги на «Data Science in Theory and Practice» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science in Theory and Practice»

Обсуждение, отзывы о книге «Data Science in Theory and Practice» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x