Computational Statistics in Data Science

Здесь есть возможность читать онлайн «Computational Statistics in Data Science» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Statistics in Data Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Statistics in Data Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An essential roadmap to the application of computational statistics in contemporary data science
Computational Statistics in Data Science
Computational Statistics in Data Science
Wiley StatsRef: Statistics Reference Online
Computational Statistics in Data Science

Computational Statistics in Data Science — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Statistics in Data Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Table of Contents 1 Cover 2 Title Page Computational Statistics in Data - фото 1

Table of Contents

1 Cover

2 Title Page Computational Statistics in Data Science Edited by Walter W. Piegorsch University of Arizona Richard A. Levine San Diego State University Hao Helen Zhang University of Arizona Thomas C. M. Lee University of California‐Davis

3 Copyright

4 List of Contributors

5 Preface Reference

6 Part I: Computational Statistics and Data Science 1 Computational Statistics and Data Science in the Twenty‐First Century 1 Introduction 2 Core Challenges 1–3 3 Model‐Specific Advances 4 Core Challenges 4 and 5 5 Rise of Data Science Acknowledgments Notes References 2 Statistical Software 1 User Development Environments 2 Popular Statistical Software 3 Noteworthy Statistical Software and Related Tools 4 Promising and Emerging Statistical Software 5 The Future of Statistical Computing 6 Concluding Remarks Acknowledgments References Further Reading 3 An Introduction to Deep Learning Methods 1 Introduction 2 Machine Learning: An Overview 3 Feedforward Neural Networks 4 Convolutional Neural Networks 5 Autoencoders 6 Recurrent Neural Networks 7 Conclusion References 4 Streaming Data and Data Streams 1 Introduction 2 Data Stream Computing 3 Issues in Data Stream Mining 4 Streaming Data Tools and Technologies 5 Streaming Data Pre‐Processing: Concept and Implementation 6 Streaming Data Algorithms 7 Strategies for Processing Data Streams 8 Best Practices for Managing Data Streams 9 Conclusion and the Way Forward References

7 Part II: Simulation‐Based Methods 5 Monte Carlo Simulation: Are We There Yet? 1 Introduction 2 Estimation 3 Sampling Distribution 4 Estimating картинка 2 5 Stopping Rules 6 Workflow 7 Examples References 6 Sequential Monte Carlo: Particle Filters and Beyond 1 Introduction 2 Sequential Importance Sampling and Resampling 3 SMC in Statistical Contexts 4 Selected Recent Developments Acknowledgments Note References 7 Markov Chain Monte Carlo Methods, A Survey with Some Frequent Misunderstandings 1 Introduction 2 Monte Carlo Methods 3 Markov Chain Monte Carlo Methods 4 Approximate Bayesian Computation 5 Further Reading Abbreviations and Acronyms Notes References Note 8 Bayesian Inference with Adaptive Markov Chain Monte Carlo 1 Introduction 2 Random‐Walk Metropolis Algorithm 3 Adaptation of Random‐Walk Metropolis 4 Multimodal Targets with Parallel Tempering 5 Dynamic Models with Particle Filters 6 Discussion Acknowledgments Notes References 9 Advances in Importance Sampling 1 Introduction and Problem Statement 2 Importance Sampling 3 Multiple Importance Sampling (MIS) 4 Adaptive Importance Sampling (AIS) Acknowledgments Notes References

8 Part III: Statistical Learning 10 Supervised Learning 1 Introduction 2 Penalized Empirical Risk Minimization 3 Linear Regression 4 Classification 5 Extensions for Complex Data 6 Discussion References 11 Unsupervised and Semisupervised Learning 1 Introduction 2 Unsupervised Learning 3 Semisupervised Learning 4 Conclusions Acknowledgment Notes References 12 Random Forests 1 Introduction 2 Random Forest (RF) 3 Random Forest Extensions 4 Random Forests of Interaction Trees (RFIT) 5 Random Forest of Interaction Trees for Observational Studies 6 Discussion References 13 Network Analysis 1 Introduction 2 Gaussian Graphical Models for Mixed Partial Compositional Data 3 Theoretical Properties 4 Graphical Model Selection 5 Analysis of a Microbiome–Metabolomics Data 6 Discussion References 14 Tensors in Modern Statistical Learning 1 Introduction 2 Background 3 Tensor Supervised Learning 4 Tensor Unsupervised Learning 5 Tensor Reinforcement Learning 6 Tensor Deep Learning Acknowledgments References 15 Computational Approaches to Bayesian Additive Regression Trees 1 Introduction 2 Bayesian CART 3 Tree MCMC 4 The BART Model 5 BART Example: Boston Housing Values and Air Pollution 6 BART MCMC 7 BART Extentions 8 Conclusion References

9 Part IV: High‐Dimensional Data Analysis 16 Penalized Regression 1 Introduction 2 Penalization for Smoothness 3 Penalization for Sparsity 4 Tuning Parameter Selection References 17 Model Selection in High‐Dimensional Regression 1 Model Selection Problem 2 Model Selection in High‐Dimensional Linear Regression 3 Interaction‐Effect Selection for High‐Dimensional Data 4 Model Selection in High‐Dimensional Nonparametric Models 5 Concluding Remarks References 18 Sampling Local Scale Parameters in High-Dimensional Regression Models 1 Introduction 2 A Blocked Gibbs Sampler for the Horseshoe 3 Sampling картинка 3 4 Sampling картинка 4 5 Appendix: A. Newton–Raphson Steps for the Inverse‐cdf Sampler for картинка 5 Acknowledgment References Note 19 Factor Modeling for High-Dimensional Time Series 1 Introduction 2 Identifiability 3 Estimation of High‐Dimensional Factor Model 4 Determining the Number of Factors Acknowledgment References

10 Part V: Quantitative Visualization 20 Visual Communication of Data: It Is Not a Programming Problem, It Is Viewer Perception 1 Introduction 2 Case Studies Part 1 3 Let StAR Be Your Guide 4 Case Studies Part 2: Using StAR Principles to Develop Better Graphics 5 Ask Colleagues Their Opinion 6 Case Studies: Part 3 7 Iterate 8 Final Thoughts Notes References 21 Uncertainty Visualization 1 Introduction 2 Uncertainty Visualization Theories 3 General Discussion References 22 Big Data Visualization 1 Introduction 2 Architecture for Big Data Analytics 3 Filtering 4 Aggregating 5 Analyzing 6 Big Data Graphics 7 Conclusion References 23 Visualization‐Assisted Statistical Learning 1 Introduction 2 Better Visualizations with Seriation 3 Visualizing Machine Learning Fits 4 Condvis2 Case Studies 5 Discussion References 24 Functional Data Visualization 1 Introduction 2 Univariate Functional Data Visualization 3 Multivariate Functional Data Visualization 4 Conclusions Acknowledgment References

11 Part VI: Numerical Approximation and Optimization 25 Gradient‐Based Optimizers for Statistics and Machine Learning 1 Introduction 2 Convex Versus Nonconvex Optimization 3 Gradient Descent 4 Proximal Gradient Descent: Handling Nondifferentiable Regularization 5 Stochastic Gradient Descent References 26 Alternating Minimization Algorithms 1 Introduction 2 Coordinate Descent 3 EM as Alternating Minimization 4 Matrix Approximation Algorithms 5 Conclusion References 27 A Gentle Introduction to Alternating Direction Method of Multipliers (ADMM) for Statistical Problems 1 Introduction 2 Two Perfect Examples of ADMM 3 Variable Splitting and Linearized ADMM 4 Multiblock ADMM 5 Nonconvex Problems 6 Stopping Criteria 7 Convergence Results of ADMM Acknowledgments References 28 Nonconvex Optimization via MM Algorithms: Convergence Theory 1 Background 2 Convergence Theorems 3 Paracontraction 4 Bregman Majorization References

12 Part VII: High‐Performance Computing 29 Massive Parallelization 1 Introduction 2 Gaussian Process Regression and Surrogate Modeling 3 Divide‐and‐Conquer GP Regression 4 Empirical Results 5 Conclusion Acknowledgments References 30 Divide‐and‐Conquer Methods for Big Data Analysis 1 Introduction 2 Linear Regression Model 3 Parametric Models 4 Nonparametric and Semiparametric Models 5 Online Sequential Updating 6 Splitting the Number of Covariates 7 Bayesian Divide‐and‐Conquer and Median‐Based Combining 8 Real‐World Applications 9 Discussion Acknowledgment References 31 Bayesian Aggregation 1 From Model Selection to Model Combination 2 From Bayesian Model Averaging to Bayesian Stacking 3 Asymptotic Theories of Stacking 4 Stacking in Practice 5 Discussion References 32 Asynchronous Parallel Computing 1 Introduction 2 Asynchronous Parallel Coordinate Update 3 Asynchronous Parallel Stochastic Approaches 4 Doubly Stochastic Coordinate Optimization with Variance Reduction 5 Concluding Remarks References

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Statistics in Data Science»

Представляем Вашему вниманию похожие книги на «Computational Statistics in Data Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Statistics in Data Science»

Обсуждение, отзывы о книге «Computational Statistics in Data Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x