Maria Cristina Mariani - Data Science in Theory and Practice

Здесь есть возможность читать онлайн «Maria Cristina Mariani - Data Science in Theory and Practice» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science in Theory and Practice: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science in Theory and Practice»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

DATA SCIENCE IN THEORY AND PRACTICE delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs,
will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Data Science in Theory and Practice — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science in Theory and Practice», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 4.6 Cyclical component (imposed on the underlying trend). The horizontal axis is time картинка 21and the vertical axis is the time series картинка 22.

Figure 7.1The big O notation.

Figure 7.2The картинка 23notation.

Figure 7.3The картинка 24notation.

Figure 7.4Symbols used in flowchart.

Figure 7.5Flowchart to add two numbers entered by user.

Figure 7.6Flowchart to find all roots of a quadratic equation Data Science in Theory and Practice - изображение 25.

Figure 7.7Flowchart.

Figure 8.1The box plot.

Figure 8.2Box plot example.

Figure 9.1Scatter plot of temperature versus ice cream sales.

Figure 9.2Heatmap of handwritten digit data.

Figure 9.3Map of earthquake magnitudes recorded in Chile.

Figure 9.4Spatial distribution of earthquake magnitudes (Mariani et al. 2016).

Figure 9.5Number of text messages sent.

Figure 9.6Normal Q–Q plot.

Figure 9.7Risk of loan default. Source: Tableau Viz Gallery.

Figure 9.8Top five publishing markets. Source: Modified from International Publishers Association – Annual Report.

Figure 9.9High yield defaulted issuer and volume trends. Source: Based on Fitch High Yield Default Index, Bloomberg.

Figure 9.10Statistics page for popular movies and cinema locations. Source: Google Charts.

Figure 10.1One‐step binomial tree for the return process.

Figure 11.1Height versus weight.

Figure 11.2Visualizing low‐dimensional data.

Figure 11.32D data set.

Figure 11.4First PCA axis.

Figure 11.5Second PCA axis.

Figure 11.6New axis.

Figure 11.7Scatterplot of Royal Dutch Shell stock versus Exxon Mobil stock.

Figure 12.1Classification (by quadrant) of earthquakes and explosions using the Chernoff and Kullback–Leibler differences.

Figure 12.2Classification (by quadrant) of Lehman Brothers collapse and Flash crash event using the Chernoff and Kullback–Leibler differences.

Figure 12.3Clustering results for the earthquake and explosion series based on symmetric divergence using PAM algorithm.

Figure 12.4Clustering results for the Lehman Brothers collapse, Flash crash event, Citigroup (2009), and IAG (2011) stock data based on symmetric divergence using the PAM algorithm.

Figure 13.1Scatter plot of data in Table 13.1

Figure 16.1The картинка 26‐plane and several other horizontal planes.

Figure 16.2The Data Science in Theory and Practice - изображение 27‐plane and several parallel planes.

Figure 16.3The plane Data Science in Theory and Practice - изображение 28.

Figure 16.4Two class problem when data is linearly separable.

Figure 16.5Two class problem when data is not linearly separable.

Figure 16.6ROC curve for linear SVM.

Figure 16.7ROC curve for nonlinear SVM.

Figure 17.1Single hidden layer feed‐forward neural networks.

Figure 17.2Simple recurrent neural network.

Figure 17.3Long short‐term memory unit.

Figure 17.4Philippines (PSI). (a) Basic RNN. (b) LTSM.

Figure 17.5Thailand (SETI). (a) Basic RNN. (b) LTSM.

Figure 17.6United States (NASDAQ). (a) Basic RNN. (b) LTSM.

Figure 17.7JPMorgan Chase & Co. (JPM). (a) Basic RNN. (b) LTSM.

Figure 17.8Walmart (WMT). (a) Basic RNN. (b) LTSM.

Figure 18.13D power spectra of the daily returns from the four analyzed stock companies. (a) Discover. (b) Microsoft. (c) Walmart. (d) JPM Chase.

Figure 18.23D power spectra of the returns (generated per minute) from the four analyzed stock companies. (a) Discover. (b) Microsoft. (c) Walmart. (d) JPM Chase.

Figure 19.1Time‐frequency image of explosion 1 recorded by ANMO (Table 19.2).

Figure 19.2Time‐frequency image of earthquake 1 recorded by ANMO (Table 19.2).

Figure 19.3Three‐dimensional graphic information of explosion 1 recorded by ANMO (Table 19.2).

Figure 19.4Three‐dimensional graphic information of earthquake 1 recorded by ANMO (Table 19.2).

Figure 19.5Time‐frequency image of explosion 2 recorded by TUC (Table 19.3).

Figure 19.6Time‐frequency image of earthquake 2 recorded by TUC (Table 19.3).

Figure 19.7Three‐dimensional graphic information of explosion 2 recorded by TUC (Table 19.3).

Figure 19.8Three‐dimensional graphic information of earthquake 2 recorded by TUC (Table 19.3).

Figure 21.1 картинка 29for volcanic eruptions 1 and 2.

Figure 21.2DFA for volcanic eruptions 1 and 2.

Figure 21.3DEA for volcanic eruptions 1 and 2.

List of Tables

Table 2.1 Examples of random vectors.

Table 3.1 Ramus Bone Length at Four Ages for 20 Boys.

Table 4.1 Time series data of the volume of sales of over a six hour period.

Table 4.2 Simple moving average forecasts.

Table 4.3 Time series data used in Example 4.6.

Table 4.4 Weighted moving average forecasts.

Table 4.5 Trend projection of weighted moving average forecasts.

Table 4.6 Exponential smoothing forecasts of volume of sales.

Table 4.7 Exponential smoothing forecasts from Example 4.9.

Table 4.8Adjusted exponential smoothing forecasts.

Table 6.1Numbers.

Table 6.2Files mode in Python.

Table 7.1Common asymptotic notations.

Table 9.1Temperature versus ice cream sales.

Table 12.1Events information.

Table 12.2Discriminant scores for earthquakes and explosions groups.

Table 12.3Discriminant scores for Lehman Brothers collapse and Flash crash event.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science in Theory and Practice»

Представляем Вашему вниманию похожие книги на «Data Science in Theory and Practice» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science in Theory and Practice»

Обсуждение, отзывы о книге «Data Science in Theory and Practice» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x