Computational Statistics in Data Science

Здесь есть возможность читать онлайн «Computational Statistics in Data Science» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Statistics in Data Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Statistics in Data Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An essential roadmap to the application of computational statistics in contemporary data science
Computational Statistics in Data Science
Computational Statistics in Data Science
Wiley StatsRef: Statistics Reference Online
Computational Statistics in Data Science

Computational Statistics in Data Science — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Statistics in Data Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3) where and denotes the - фото 100

where картинка 101, and картинка 102denotes the картинка 103‐norm, that is, the number of nonzero elements. Because best subset selection requires an immensely difficult nonconvex optimization, Tibshirani [38] famously replaces the картинка 104‐norm with the картинка 105‐norm, thereby providing sparsity, while nonetheless maintaining convexity.

Historically, Bayesians have paid much less attention to convexity than have optimization researchers. This is most likely because the basic theory [13] of MCMC does not require such restrictions: even if a target distribution has one million modes, the well‐constructed Markov chain explores them all in the limit. Despite these theoretical guarantees, a small literature has developed to tackle multimodal Bayesian inference [39–42] because multimodal target distributions do present a challenge in practice. In analogy with Equation (3), Bayesians seek to induce sparsity by specifiying priors such as the spike‐and‐slab [43–45], for example,

As with the best subset selection objective function the spikeandslab target - фото 106

As with the best subset selection objective function, the spike‐and‐slab target distribution becomes heavily multimodal as картинка 107grows and the support of картинка 108's discrete distribution grows to картинка 109potential configurations.

In the following section, we present an alternative Bayesian sparse regression approach that mitigates the combinatorial problem along with a state‐of‐the‐art computational technique that scales well both in картинка 110and картинка 111.

3 Model‐Specific Advances

These challenges will remain throughout the twenty‐first century, but it is possible to make significant advances for specific statistical tasks or classes of models. Section 3.1considers Bayesian sparse regression based on continuous shrinkage priors, designed to alleviate the heavy multimodality (big картинка 112) of the more traditional spike‐and‐slab approach. This model presents a major computational challenge as картинка 113and картинка 114grow, but a recent computational advance makes the posterior inference feasible for many modern large‐scale applications.

And because of the rise of data science, there are increasing opportunities for computational statistics to grow by enabling and extending statistical inference for scientific applications previously outside of mainstream statistics. Here, the science may dictate the development of structured models with complexity possibly growing in картинка 115and картинка 116. Section 3.2presents a method for fast phylogenetic inference, where the primary structure of interest is a “family tree” describing a biological evolutionary history.

3.1 Bayesian Sparse Regression in the Age of Big N and Big P

With the goal of identifying a small subset of relevant features among a large number of potential candidates, sparse regression techniques have long featured in a range of statistical and data science applications [46]. Traditionally, such techniques were commonly applied in the “ картинка 117” setting, and correspondingly computational algorithms focused on this situation [47], especially within the Bayesian literature [48].

Due to a growing number of initiatives for large‐scale data collections and new types of scientific inquiries made possible by emerging technologies, however, increasingly common are datasets that are “big картинка 118” and “big Computational Statistics in Data Science - изображение 119” at the same time. For example, modern observational studies using health‐care databases routinely involve Computational Statistics in Data Science - изображение 120patients and Computational Statistics in Data Science - изображение 121clinical covariates [49]. The UK Biobank provides brain imaging data on Computational Statistics in Data Science - изображение 122patients, with Computational Statistics in Data Science - изображение 123, depending on the scientific question of interests [50]. Single‐cell RNA sequencing can generate datasets with картинка 124(the number of cells) in millions and картинка 125(the number of genes) in tens of thousands, with the trend indicating further growths in data size to come [51].

3.1.1 Continuous shrinkage: alleviating big M

Bayesian sparse regression, despite its desirable theoretical properties and flexibility to serve as a building block for richer statistical models, has always been relatively computationally intensive even before the advent of “big картинка 126and big картинка 127” data [45, 52, 53]. A major source of its computational burden is severe posterior multimodality (big картинка 128) induced by the discrete binary nature of spike‐and‐slab priors ( Section 2.3). The class of global–local continuous shrinkage priors is a more recent alternative to shrink s in a more continuous manner thereby alleviating if not eliminating the - фото 129s in a more continuous manner, thereby alleviating (if not eliminating) the multimodality issue [54, 55]. This class of prior is represented as a scale mixture of Gaussians:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Statistics in Data Science»

Представляем Вашему вниманию похожие книги на «Computational Statistics in Data Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Statistics in Data Science»

Обсуждение, отзывы о книге «Computational Statistics in Data Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x