Guillermo L. Dumrauf - Manual de matemáticas financieras

Здесь есть возможность читать онлайн «Guillermo L. Dumrauf - Manual de matemáticas financieras» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на испанском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Manual de matemáticas financieras: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Manual de matemáticas financieras»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Las matemáticas financieras tienen una inmediata y amplia aplicación a situaciones de la vida real. Por ello, es de vital importancia forjar un sólido conocimiento en la disciplina.
Este libro ha sido preparado de tal manera que pueda alcanzar el entrenamiento necesario para desenvolverse y progresar con ductilidad en el estudio de la materia, respetando los siguientes ejes:
• Tratamiento ameno pero riguroso de la teoría
• Ejercitación práctica con resoluciones comentadas
• Aplicación a problemas del mundo real
Asimismo, el libro cuenta con recursos adicionales que se pueden descargar gratis desde www.marcombo.info para reforzar los conocimientos aprendidos sobre la materia, como comentarios a las resoluciones de los ejercicios, que serán muy útiles para facilitar la comprensión de los temas.
Si es un estudiante de las carreras de grado y posgrado de económicas, finanzas o ingenierías, un ejecutivo financiero u otro profesional que utiliza las matemáticas financieras en su labor cotidiana, este libro será su gran aliado.
Guillermo L. Dumrauf: Doctor en Ciencias Económicas por la Universidad de Buenos Aires y consultor económico financiero, es profesor titular en prestigiosas universidades y autor de 12 libros de finanzas, matemáticas aplicadas a las finanzas y macroeconomía. Asimismo, ha escrito numerosas publicaciones, colabora en revistas y participa en infinidad de congresos. Es conferencista internacional y miembro de comités académicos en maestrías y doctorados.

Manual de matemáticas financieras — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Manual de matemáticas financieras», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Son aquellas en las cuales cada uno de los términos se obtiene multiplicando al anterior por un número constante q llamado razón. La progresión 3, 6, 12, 24, 48, 96 es geométrica de razón q = 2, pues cada término es igual al anterior multiplicado por 2. Por ejemplo, los intereses que se acumulan en el régimen de interés compuesto, constituyen una progresión geométrica creciente. También el valor presente de las cuotas de un préstamo constituye una progresión geométrica, que en este caso es decreciente.

El cálculo de un término cualquiera a nse puede obtener directamente haciendo:

a n= a 1q n−1

En el ejemplo 0, el 5.º término es:

a 5= 3.2 4= 3 × 16 = 48

Suma de todos los términos: en una progresión geométrica finita, la suma de los términos de esta se calcula con las siguientes fórmulas:

Manual de matemáticas financieras - изображение 25para progresiones crecientes.

Manual de matemáticas financieras - изображение 26para progresiones decrecientes.

Si la progresión geométrica tiene infinitos términos, con una razón 0 < q < 1, la última fórmula expresada se transforma del siguiente modo:

Observe que en el 2º término del resultado si n entonces q n0 por ser 0 - фото 27

Observe que en el 2.º término del resultado, si n→∞ entonces q n→0 por ser 0 < q < 1, con lo cual, se anula todo ese término y queda:

Función exponencial A la función fx b x donde b 0 b 1 y el exponente - фото 28

Función exponencial

A la función f(x) = b x, donde b > 0, b ≠ 1 y el exponente x es cualquier número real, se la denomina función exponencial con base b. En la figura 1.5, se muestran las gráficas de dos funciones exponenciales, donde se puede observar que existen dos formas básicas, dependiendo de si la base b > 1 o bien b < 1. Si b > 1, entonces la gráfica de y = 2 xasciende de izquierda a derecha; es decir, al aumentar x también se incrementa y, mientras que la función y = (1/2) desciende de izquierda a derecha, es decir, que al aumentar x disminuye el valor de y. A la función ascendente, se la puede asimilar al monto a interés compuesto (1+i) ny a la función descendente se la puede asimilar a la función 1/(1+i) n.

Figura 15Función exponencial La función exponencial natural Uno de los - фото 29

Figura 1.5Función exponencial.

La función exponencial natural

Uno de los números más útiles como base para las funciones exponenciales es el número irracional denotado por la letra e en honor al matemático suizo Leonard Euler. Sus primeras cifras son 2,718281. Aunque este número parece raro para ser la base de una función exponencial, es muy utilizado en finanzas y en economía, principalmente para modelizar funciones de crecimiento y disminución de precios cuando se asume que se producen en forma continua.

El número e se obtiene al resolver un binomio del tipo Manual de matemáticas financieras - изображение 30cuando n tiende a infinito, y puede comprobarse que cuando aumenta n, el valor de e se estabiliza en 2,718281:

Manual de matemáticas financieras - изображение 31 Figura 16Función exponencial natural Para comprender mejor la utilización del - фото 32

Figura 1.6Función exponencial natural.

Para comprender mejor la utilización del número e en finanzas, pensemos en un ejemplo. Si un activo financiero tiene hoy un precio de 100 € y este crece al 5 % anual en forma continua (el 5 % se compone continuamente) dentro de un año su valor será:

100e 0,05= 105,127

Función logarítmica

La función logarítmica es la inversa de la función exponencial, ya que la función logarítmica invierte la acción de la función y viceversa. Si se calculó el valor de una función exponencial, por ejemplo, un monto a interés compuesto, para un dato de entrada x (tiempo) se obtuvo un resultado y (monto); en cambio, en la función logarítmica, el dato de entrada es el monto y se obtiene el exponente. Entonces, el logaritmo de un número es un exponente. Concretamente, es el de la potencia a la que se debe elevar la base (que cuando es el número e, se denomina logaritmo natural) para obtener el monto. Por ejemplo:

Log 2,71828 = 2,079 porque 2,7182 2,079= 8

Entonces, para calcular el logaritmo de x en base b, se expresa y = Log bx, y significa que b y= x. De manera que el resultado y es la potencia a la que se debe elevar la base para obtener como resultado x.

La función logarítmica invierte la función exponencial. En las figuras 1.7y 1.8, se muestran las gráficas de la función exponencial del monto y = f(x) y su inversa logarítmica. Observe que en la función monto, para un tiempo dado, surge un monto, mientras que en la función logarítmica, para ese monto, hay como resultado el exponente correspondiente.

Figura 17Función exponencial Figura 18Función logarítmica Logaritmo - фото 33

Figura 1.7Función exponencial.

Figura 18Función logarítmica Logaritmo natural Dados dos números reales y - фото 34

Figura 1.8Función logarítmica.

Logaritmo natural

Dados dos números reales y positivos n y b, se llama logaritmo del número n en base b al número x, siendo x el número al cual hay que elevar b para obtener n:

log bn = x si y solo si b x= n

Por ejemplo, log 24 = 2 si y solo si 2 2= 4.

Hasta aquí estaríamos hablando de un logaritmo común, pero si consideramos que la base b es igual al número e —que describimos en la Sección 2.4—, entonces estaríamos en presencia de un logaritmo natural, o también denominado neperiano. Por ejemplo:

Ln 10 = 2,302585 y e 2,302585= 10

La función y = ln(x) se define solo para x > 0 y aparece en la figura 1.9. Para obtenerla, se puede insertar cualquier valor x > 0 y obtener ln(x) usando una calculadora o una hoja de cálculo. Recuerde que no existe el logaritmo de un número negativo, en cambio, el logaritmo de cualquier número menor que 1 (uno) da un número negativo.

Figura 19Función logaritmo natural Se puede observar en la figura 19que - фото 35

Figura 1.9Función logaritmo natural.

Se puede observar en la figura 1.9que:

• Ln(x) < 0 para 0 < x < 1.

• Ln(1) = 0 (que corresponde a la intersección con el eje x (1,0). Esto se entiende ya que habría que elevar a 0 (cero) la base para obtener 1 (uno).

• Ln(x) > 0 para x > 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Manual de matemáticas financieras»

Представляем Вашему вниманию похожие книги на «Manual de matemáticas financieras» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Manual de matemáticas financieras»

Обсуждение, отзывы о книге «Manual de matemáticas financieras» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x