Ричард Фейнман - 6. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если скорость заряда направлена не к точке наблюдения 1 то легко видеть что - фото 406

Если скорость заряда направлена не к точке наблюдения (1), то легко видеть, что важна только составляющая его скорости в направлении к точке (1). Если обозначить эту составляющую скорости через v r , то поправочный множитель запишется в виде 1/[1-v r/с] зап. Кроме того, проделанный нами анализ в равной степени проходит для распределения заряда любой формы (это не обязательно должен быть куб). Наконец, поскольку «раз­мер» а заряда не вошел в окончательный итог, то тот же резуль­тат получится, если заряд стянется до любых размеров, вплоть до точки. Общий результат состоит в том, что скалярный потен­циал точечного заряда, движущегося с произвольной скоростью,

(21.32)

Это уравнение часто пишут в эквивалентном виде:

2133 где r вектор соединяющий заряд с той точкой 1 в которой - фото 407

(21.33)

где r — вектор, соединяющий заряд с той точкой (1), в кото­рой вычисляется потенциал j, а все величины в скобках надо вычислять в «запаздывающий» момент времени t'=(t—r'/c).

То же самое получается и тогда, когда по (21.16) вычисляют А для точечного заряда. Плотность тока равна rv, а интеграл от r — тот же, что и в j. Векторный потенциал равен

2134 Потенциалы точечного заряда в этой форме были впервые получены Льенаром - фото 408

(21.34)

Потенциалы точечного заряда в этой форме были впервые получены Льенаром и Вихертом. Их так и называют: потенциалы Льенара — Вихерта.

Чтобы замкнуть круг и вернуться к формуле (21.1), теперь нужно только подсчитать Е и В из этих потенциалов (при помо­щи B=СXA и Е=-Сj- dA/dt). Теперь остается одна арифме­тика. Впрочем, арифметика эта довольно запутанна, так что мы не будем приводить здесь детали счета. Придется поверить мне на слово, что формула (21.1) эквивалентна выведенным нами потенциалам Льенара — Вихерта.

*Если у вас достаточно времени и вам не жаль бумаги, то попытай­тесь проделать это самостоятельно. Вот вам парочка советов: во-первых, не забывайте, что производные r' довольно запутанны, ведь они суть функции от t'! Во-вторых, не пытайтесь вывести формулу (21.1); лучше проделайте в ней все дифференцирования и затем сопоставьте то, что у вас получится, с выражением для Е, полученным из потенциалов (21.33) и (21.34).

§ 6. Потенциалы заряда, движущегося с постоянной скоростью; формула Лоренца

Применим теперь потенциалы Льенара — Вихерта к случаю заряда, движущегося по прямой с постоянной скоростью, и вычислим поле этого заряда. Позже мы повторим этот вывод, используя уже принцип относительности. Мы знаем величину потенциалов в той системе, в которой заряд покоится. Когда заряд движется, то все получается простым релятивистским преобразованием от одной системы к другой. Но теория отно­сительности ведет свое начало от теории электричества и магне­тизма. Формулы преобразований Лоренца [см. гл. 15 (вып. 2)]— это открытия, сделанные Лоренцем при исследовании уравне­ний электричества и магнетизма. И для того чтобы вы понимали, откуда все пошло, я хочу показать вам, что уравнения Максвелла действительно приводят к преобразованиям Лоренца. Я начну с вычисления потенциала равномерно движущегося заряда прямо из электродинамики, из уравнений Максвелла. Мы уже показали, что уравнения Максвелла приводят к потен­циалу, полученному в предыдущем параграфе. Стало быть, пользуясь этими потенциалами, мы используем тем самым тео­рию Максвелла.

6 Электродинамика - изображение 409

Пусть имеется заряд, движущийся вдоль оси х со скоростью v (фиг. 21.8). Нас интересуют потенциалы в точке Р(х, у, z). Если (=0 — момент, в который заряд проходит через начало координат, то в момент t заряд окажется в точке x—vt, y=z=0. А нам нужно знать его положение с учетом запаздывания, т. е. положение в момент

(21.35)

где r' — расстояние от заряда до точки Р в этот запаздываю­щий момент. В это более раннее время t' заряд был в x=vt', так что

2136 Чтобы найти r или t это уравнение надо сопоставить с 2135 - фото 410

(21.36)

Чтобы найти r' или t', это уравнение надо сопоставить с (21.35). Исключим сперва r', решив (21.35) относительно r ' и подставив в (21.36). Возвысив затем обе части в квадрат,

т е квадратное уравнение относительно t Раскрыв скобки и расположив члены - фото 411

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6. Электродинамика»

Представляем Вашему вниманию похожие книги на «6. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6. Электродинамика»

Обсуждение, отзывы о книге «6. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x