3a. Излучение. Волны. Кванты
§ 1. Вектор электрического поля световой волны
§ 2. Поляризация рассеянного света
§ 3. Двойное лучепреломление
§ 4. Поляризаторы
§ 5. Оптическая активность
§ 6, Интенсивность отраженного света
§ 7. Аномальное преломление
§ 1. Вектор электрического поля световой волны
В этой главе мы рассмотрим круг явлений, связанных с векторным характером электрического поля световой волны. В предыдущих главах направление колебаний электрического поля нас не интересовало, правда, мы отметили, что вектор электрического поля лежит в плоскости, перпендикулярной направлению распространения света. Но нам не нужно было знать направление вектора более точно. Теперь мы перейдем к изучению явлений, в которых главную роль играет определенное направление колебаний электрического вектора.
В идеально монохроматической световой волне электрическое поле колеблется с определенной частотой, а так как x- и y-компоненты поля могут колебаться независимо с одной и той же частотой, то сначала мы рассмотрим сложение двух взаимно перпендикулярных колебаний. Какое электрическое поле возникает при сложении колебаний x- и y-компонент поля с одинаковой частотой? Складывая колебание в направлении x и колебание с той же фазой в направлении у, получаем в плоскости xy колебание в новом направлении.
На фиг. 33.1 показано, как происходит сложение колебаний с разными амплитудами в направлении x и y. Но примеры, представленные на этом рисунке, не исчерпывают всех возможностей: до сих пор предполагалось, что колебания вдоль осей x и y находятся в одной фазе, но это совсем не обязательно. Может случиться, что х- и y-колебания происходят с разными фазами.
В этом последнем случае вектор электрического поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.
Фиг. 33.1. Сложение колебаний в направлениях х и у, когда разность фаз между ними равна нулю.
Подвесим на длинной веревке мяч, чтобы он мог свободно колебаться в горизонтальной плоскости; колебания будут носить синусоидальный характер. Представим себе мысленно оси х и у в горизонтальной плоскости колебаний мяча с началом координат в точке покоя мяча. Выбирая соответствующее начальное смещение и начальную скорость мяча, можно заставить мяч колебаться по оси х, по оси у или по любому другому направлению в плоскости ху с одной и той же частотой, равной частоте маятника. Эти колебания мяча аналогичны колебаниям электрического вектора, приведенным на фиг. 33.1. В каждом случае колебания в направлениях х ж у достигают максимума одновременно и, следовательно, оба колебания находятся в фазе. Но известно, что самый общий тип движения мяча — движение по эллипсу — возникает, когда колебания в направлениях х и у происходят с разными фазами.
На фиг. 33.2 показано сложение колебаний по осям х и у для разных значений сдвига фаз между ними. Во всех примерах электрический вектор описывает эллипс. Колебание по прямой есть тоже частный случай эллиптического, когда сдвиг фаз равен нулю (или целому кратному я); при равных амплитудах и сдвиге фаз 90° (или нечетном числе л/2) происходит движение по окружности.
На фиг. 33.2 компоненты электрического поля в направлениях х и у записаны в виде комплексных чисел, что оказывается очень удобным для явного выделения разности фаз. В этих обозначениях не следует только путать действительную и мнимую части с х- и y-компонентами поля. Изображенные на фиг. 33.2 компоненты поля по осям х и у есть реальные физические поля, которые можно измерить. Действительная и мнимая части вектора электрического поля введены только для математического удобства, и физического смысла такое разделение не имеет.
Сделаем несколько замечаний о терминологии. Свет называется линейно поляризованным (иногда плоско поляризованным), если электрическое поле колеблется по прямой линии; на фиг. 33.1 показан случай линейной поляризации. Когда вектор электрического поля описывает эллипс, говорят об эллиптической поляризации. Если же электрический вектор описывает окружность, мы имеем круговую поляризацию. Если электрический вектор при своем движении в световой волне крутится как правосторонний винт, говорят о правой круговой поляризации.
Читать дальше