Ричард Фейнман - 6. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим что имеется сферическая волна 219 и поглядим во что она - фото 355

Предположим, что имеется сферическая волна (21.9) и по­глядим, во что она превращается при очень малых r. Тогда запаздыванием -r в f(t-r /с) можно пренебречь, и посколь­ку функция f плавная, ш превращается в

(21.10)

6 Электродинамика - изображение 356

Итак, ш в точности похоже на кулоново поле заряда, располо­женного в начале координат. Мы знаем, что для небольшого сгустка заряда, ограниченного очень малой областью близ на­чала координат и имеющего плотность r,

6 Электродинамика - изображение 357

где Q=∫rdV . Такой потенциал j удовлетворяет уравнению

Следуя тем же расчетам, мы должны были бы сказать, что ш из выражения (21.10) удовлетворяет уравнению

6 Электродинамика - изображение 358

(21.11)

где s связано с f формулой

6 Электродинамика - изображение 359

при

6 Электродинамика - изображение 360

Единственная разница в том, что в общем случае s, а, стало быть, и S может оказаться функцией времени.

Далее очень важно то, что если ш удовлетворяет (21.11) при малых r , то оно удовлетворяет также и (21.7). По мере приближения к началу координат зависимость шот r типа 1/r приводит к тому, что пространственные производные ста­новятся очень большими. А производные по времени остаются теми же. [Это просто производные f(t) по времени.] Так что, когда r стремится к нулю, множителем d 2 ш/dt 2 в уравнении (21.7) по сравнению с С 2ш можно пренебречь, и (21.7) становится эквивалентным уравнению (21.11).

Подытоживая можно сказать что если функция источника st из уравнения 217 - фото 361

Подытоживая, можно сказать, что если функция источника s(t) из уравнения (21.7) сосредоточена в начале координат и ее общая величина равна

(21.12)

то решение уравнения 217 имеет вид 2113 Влияние слагаемого с d 2 шdt 2 в - фото 362

то решение уравнения (21.7) имеет вид

(21.13)

Влияние слагаемого с d 2 ш/dt 2 в (21.7) сказывается лишь на появ­лении запаздывания (t-r/с) в потенциале кулонова типа.

§ 3. Общее peшeниe уравнений Максвелла

Мы нашли решение уравнения (21.7) для «точечного» источ­ника. Теперь встает новый вопрос: Каков вид решения для рас­средоточенного источника? Ну, это решить легко; всякий источ­ник s(x, у, z, t) можно считать состоящим из суммы многих «точечных» источников, расположенных поодиночке в каждом элементе объема dV и имеющих силу s(x, у, z, t)dV. Поскольку (21.7) линейно, суммарное поле представляет собой суперпози­цию полей от всех таких элементов источника.

Используя результаты предыдущего параграфа см 2113 мы получим что в - фото 363

Используя результаты предыдущего параграфа [см. (21.13)], мы получим, что в момент t поле dm в точке 1 , y 1,z 1) [или, короче, в точке (1)], создаваемое элементом источника sdV в точке 2> у 2 , z 2 ) [или, короче, в точке (2)],выражается форму­лой

где r 12 расстояние от 2 до 1 Сложение вкладов от всех частей источника - фото 364

где r 12 расстояние от (2) до (1). Сложение вкладов от всех частей источника означает, конечно, интегрирование по всей области, где s№0, так что мы имеем

(21.14)

Иначе говоря, поле в точке (1) в момент времени t представляет собой сумму всех сферических волн, испускаемых в момент t-r 12/c всеми элементами источника, расположенного в точке (2). Выражение (21.14) является решением нашего волнового уравнения для любой системы источников.

Теперь мы видим как получать общее решение уравнений Максвелла Если - фото 365

Теперь мы видим, как получать общее решение уравнений Максвелла. Если подразумевать под шскалярный потенциал j, то функция источника s превращается в r/e 0. А можно считать, что ш представляет одну из трех компонент векторного потен­циала А; тогда s означает соответствующую компоненту j/e 0c 2. Стало быть, если во всех точках известна плотность нарядов r (х, у, z, t) и плотность тока j (х, у, z, t), то решения уравнении (21.4) и (21.5) можно выписать немедленно:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6. Электродинамика»

Представляем Вашему вниманию похожие книги на «6. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6. Электродинамика»

Обсуждение, отзывы о книге «6. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x