Ричард Фейнман - 6. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нужно, однако, заметить, что из этого добавочного пред­положения вытекает интересное следствие: мы теряем при этом симметрию относительно времени, которая есть у уравнений Максвелла. Как исходные уравнения для Е и В, так и вытекающие из них волновые уравнения при изменении знака t не ме­няются. Эти уравнения утверждают, что любому решению, ко­торое отвечает волне, бегущей в одну сторону, отвечает столь же правильное решение для волны, бегущей в обратную сторону. И утверждая, что мы намерены брать в расчет только расходя­щиеся сферические волны, мы делаем тем самым важное допол­нительное предположение. (Очень тщательно изучалась такая электродинамика, в которой обходятся без этого дополнитель­ного предположения. Как это ни удивительно, но во многих обстоятельствах она не приводит к физически абсурдным ре­зультатам. Однако обсуждение этих идей теперь увлекло бы нас чересчур в сторону. Мы поговорим об этом подробнее в гл. 28.)

Нужно упомянуть еще об одном важном факте. В нашем решении для расходящейся волны (20.35) функция ш в начале ко­ординат бесконечна. Это как-то необычно. Мы бы предпочли иметь такие волновые решения, которые гладки повсюду. Наше решение физически относится к такой ситуации, когда в начале координат располагается источник. Значит, мы нечаянно сде­лали одну ошибку: наша формула (20.35) не является решением свободного волнового уравнения (20.33) повсюду; уравнение (20.33) с нулем в правой части решено повсюду, кроме начала координат. Ошибка вкралась оттого, что некоторые действия при выводе уравнения при r=0 «незаконны».

Покажем что ту же самую ошибку легко сделать и в электростатике Допустим - фото 338

Покажем, что ту же самую ошибку легко сделать и в элект­ростатике. Допустим, что нам нужно решить уравнение элек­тростатического потенциала в пустом пространстве С 2j=0. Лапласиан равен нулю, потому что мы предположили, что ни­каких зарядов нигде нет. Но как обстоит дело со сферически симметричным решением уравнения, т. е. с функцией j, зависящей только от r? Используя для лапласиана формулу (20.32), получаем

Умножив это выражение на r, приходим к уже интегрировав­шемуся уравнению

6 Электродинамика - изображение 339

6 Электродинамика - изображение 340

Проинтегрировав один раз по r , мы увидим, что первая про­изводная rj равна постоянной, которую мы обозначим через а;

6 Электродинамика - изображение 341

Еще раз проинтегрировав, мы получим для rj формулу

6 Электродинамика - изображение 342

где b другая постоянная интегрирования. Итак, мы обна­ружили, что решение для электростатического потенциала в пустом пространстве имеет вид

Что-то здесь явно не так. Мы же знаем решение для электро­статического потенциала в области, где нет электрических за­рядов: потенциал всюду постоянен. Это соответствует первому слагаемому в решении. Но имеется еще и второй член, подска­зывающий нам, что в потенциал дает вклад нечто, меняющееся как 1/r. Мы знаем, однако, что подобный потенциал соответ­ствует точечному заряду в начале координат. Стало быть, хоть мы и думали, что нашли решение для потенциала в пустом про­странстве, наше решение фактически дает нам также поле то­чечного источника в начале координат. Вы замечаете сходство между тем, что сейчас произошло, и тем, что произошло тогда, когда мы искали сферически симметричное решение волнового уравнения? Если бы в начале координат действительно не было ни зарядов, ни токов, то не возникли бы и сферически расходя­щиеся волны. Сферические волны должны вызываться источни­ками в начале координат. В следующей главе мы исследуем связь между излучаемыми электромагнитными волнами и вызы­вающими их токами и напряжениями.

Глава 21

РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА С ТОКАМИ И ЗАРЯДАМИ

§ 1. Свет и электро­магнитные волны

§ 2. Сферические вол­ны от точечного источника

§ 3. Общее решение уравнений Максвелла

§ 4. Поля колеблющегося диполя

§ 5. Потенциалы дви­жущегося заряда; общее реше­ние Льенара и Вихерта

§ 6. Потенциалы заряда, движущегося с постоянной скоростью;

формула Лоренца

Повторить: гл. 28 (вып. 3) «Элект­ромагнитное излучение»; гл. 31 (вып. 3)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6. Электродинамика»

Представляем Вашему вниманию похожие книги на «6. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6. Электродинамика»

Обсуждение, отзывы о книге «6. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x