Ричард Фейнман - 6. Электродинамика

Здесь есть возможность читать онлайн «Ричард Фейнман - 6. Электродинамика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

6. Электродинамика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «6. Электродинамика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

6. Электродинамика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «6. Электродинамика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(20.29)

(20.30)

Лапласиан равен сумме этих трех производных. Вспоминая,

что x 2+y 2+z 2=r 2, получаем

2031 Часто бывает удобнее записывать уравнение в следующей форме 2032 - фото 327

(20.31)

Часто бывает удобнее записывать уравнение в следующей

форме:

2032 Проделав дифференцирование указанное в 2032 вы убедитесь что - фото 328

(20.32)

Проделав дифференцирование, указанное в (20.32), вы убеди­тесь, что правая часть здесь та же, что и в (20.31).

Если мы хотим рассматривать сферически симметричные поля которые могут - фото 329

Если мы хотим рассматривать сферически симметричные поля, которые могут распространяться как сферические волны, то ве­личины, описывающие поля, должны быть функцией как r , так и t. Предположим, что нам нужно знать, какие функции ш(r, t) являются решениями трехмерного волнового уравне­ния

(20.33)

Поскольку шг t зависит от пространственных координат только через г то в - фото 330

Поскольку ш(г, t) зависит от пространственных координат только через г, то в качестве лапласиана можно использовать выражение (20.32). Но для точности, поскольку ш зависит также и от t, нужно дифференцирование по r записывать в виде частной производной. Волновое уравнение обращается в

Его и предстоит нам решать Оно выглядит сложнее чем в случае плоских волн Но - фото 331

Его и предстоит нам решать. Оно выглядит сложнее, чем в случае плоских волн. Но заметьте, что если умножить это урав­нение на r, то получится

(20.34)

Это уравнение говорит нам, что функция r ш удовлетворяет одномерному волновому уравнению по переменной r. Исполь­зуя часто подчеркивавшийся нами общий принцип, что у одних и тех же уравнений и решения одни и те же, мы приходим к выводу, что если r ш окажется функцией одного только (r- ct), то оно явится решением уравнения (20.34). Итак, мы обнаружи­ваем, что сферические волны обязаны иметь вид

6 Электродинамика - изображение 332

6 Электродинамика - изображение 333

Или, как мы видели раньше, можно в равной степени считать r ш имеющим форму

6 Электродинамика - изображение 334

Деля на r, находим, что характеризующая поле величина ш (чем бы она ни была) имеет вид

(20.35)

Такая функция представляет сферическую волну общего вида распространяющуюся от - фото 335

Такая функция представляет сферическую волну общего вида, распространяющуюся от начала координат со скоростью с. Если на минуту забыть об r в знаменателе, то амплитуда волны как функция расстояния от начала координат в каждый данный момент обладает определенной формой, которая рас­пространяется со скоростью с. Однако r в знаменателе говорит нам, что по мере того, как волна распространяется, ее амплиту­да убывает пропорционально 1/r. Иными словами, в отличие от плоской волны, амплитуда которой остается при движении все время одной и той же, амплитуда сферической волны бес­прерывно спадает (фиг. 20.6).

Фиг. 20.6. Сферическая волна ш=f(t-r /с)/r.

а — зависимость ш от r при t=t l и ma же волна в более поздний момент времени t 2; б — зависимость ш от t при r =r 1 и та же самая волна на расстоянии r 2.

Этот факт легко понять из про­стых физических соображений.

Мы знаем, что плотность энергии в волне зависит от квадрата амплитуды волны. По мере того как волна разбегается, ее энергия расплывается на все большую и большую площадь, пропорциональную квадрату радиуса волны. Если полная энер­гия сохраняется, плотность энергии должна убывать как 1/r 2, а амплитуда — как 1/r. Поэтому формула (20.35) для сфери­ческой волны вполне «разумна».

6 Электродинамика - изображение 336

Мы игнорировали другое возможное решение одномерного волнового уравнения

6 Электродинамика - изображение 337

или

Это тоже сферическая волна, но бегущая внутрь, от больших r к началу координат.

Тем самым мы делаем некоторое специальное предположе­ние. Мы утверждаем (без какого-либо доказательства), что волны, создаваемые источником, всегда бегут только от него. Поскольку мы знаем, что волны вызываются движением заря­дов, мы настраиваемся на то, что волны бегут от зарядов. Было бы довольно странно представлять, что прежде чем заряды были приведены в движение, сферическая волна уже вышла из бесконечности и прибыла к зарядам как раз в тот момент, когда они начали шевелиться. Такое решение возможно, но опыт по­казывает, что, когда заряды ускоряются, волны распростра­няются от зарядов, а не к ним. Хоть уравнения Максвелла предоставляют обеим волнам равные возможности, мы привле­каем добавочный факт, основанный на опыте, что «физическим смыслом» обладает только расходящаяся волна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «6. Электродинамика»

Представляем Вашему вниманию похожие книги на «6. Электродинамика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «6. Электродинамика»

Обсуждение, отзывы о книге «6. Электродинамика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x