Stephen Rolt - Optical Engineering Science

Здесь есть возможность читать онлайн «Stephen Rolt - Optical Engineering Science» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Optical Engineering Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Optical Engineering Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A practical guide for engineers and students that covers a wide range of optical design and optical metrology topics Optical Engineering Science Optical engineering science is at the foundation of the design of commercial optical systems, such as mobile phone cameras and digital cameras as well as highly sophisticated instruments for commercial and research applications. It spans the design, manufacture and testing of space or aerospace instrumentation to the optical sensor technology for environmental monitoring. Optics engineering science has a wide variety of applications, both commercial and research. This important book:
Offers a comprehensive review of the topic of optical engineering Covers topics such as optical fibers, waveguides, aspheric surfaces, Zernike polynomials, polarisation, birefringence and more Targets engineering professionals and students Filled with illustrative examples and mathematical equations Written for professional practitioners, optical engineers, optical designers, optical systems engineers and students,
offers an authoritative guide that covers the broad range of optical design and optical metrology topics and their applications.

Optical Engineering Science — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Optical Engineering Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As argued, Zernike polynomials are widely used in the analysis of wavefront error both in the design and testing of optical systems. From a strictly analytical and theoretical point of view the description of wavefront error in terms of its rms value is the most meaningful. However, for largely historical reasons, wavefront error is often presented as a ‘ peak to valley’ error. That is to say, the value presented is the difference between the maximum and minimum OPD across the pupil. Historically, the wavefront error for a system might have been derived from a visual inspection of a fringe pattern in an interferogram. The maximum deviation of fringes is relatively straightforward to estimate visually from a fringe pattern which might have been produced photographically. However, the rms wavefront error is more directly related to system performance. Calculation of the rms wavefront error across a pupil is a mathematical process that requires computational data acquisition and analysis and has only been universally available in more recent times. Therefore, the use of the peak to valley description still persists.

One particular disadvantage of the peak to valley description is that it is unusually responsive to large, but highly localised excursions in the wavefront error. More generally, as a rule of thumb, the peak to valley is considered to be 3.5 times the rms value. Of course, this does depend upon the form of the wavefront error. Table 5.3sets out this relationship for the first 11 Zernike terms (apart from piston). For comparison, a standard statistical measure is also presented – namely for a normally distributed wavefront error profile, the limits containing 95% of the wavefront error distribution (±1.96 standard deviations).

The values presented in Table 5.3are simply the ratio of the peak to valley (p-to-v) error for that particular distribution. To overcome the principal objection to the p-to-v measure, namely its heightened sensitivity to local variation a new peak to valley measure has been proposed by the Zygo Corporation. This measure is known as P to Vror peak to valley robust. In this measure, the wavefront error is fitted to a set of 36 Zernike polynomials. Although this process is carried out by computational analysis, the procedure is very simple. Essentially the calculation process exploits the orthonormal properties of the polynomial set and calculates the contribution of each Zernike term using the relation set out in Eq. (5.12). Following this process, the maximum and minimum of the fitted surface is calculated and the revised peak to valley figure calculated. Of course, the reduced set of 36 polynomials cannot possibly replicate localised asperities with a high spatial frequency content. Therefore, the fitted surface is effectively a smoothed version of the original and the peak to valley value derived is more representative of the underlying physics.

Table 5.3 Peak to valley: Root mean square (rms) ratios for different wavefront error forms.

Noll# n m Description P_to_V multiplier
2 and 3 1 ±1 Tilt 2.83
4 2 0 Defocus 3.46
5 and 6 2 ±2 Astigmatism 4.90
7 and 8 3 ±1 Coma 5.66
9 and 10 3 ±3 Trefoil 5.66
11 4 0 Spherical aberration 3.35
95% Gaussian 3.92

Table 5.4 Comparison of Zernike numbering systems.

n m ANSI Noll Fringe n m ANSI Noll Fringe n m ANSI Noll Fringe
0 0 0 1 0 6 −4 22 25 28 8 8 44 44 64
1 −1 1 3 2 6 −2 23 23 21 9 −9 45 55 82
1 1 2 2 1 6 0 24 22 15 9 −7 46 53 67
2 −2 3 5 5 6 2 25 24 20 9 −5 47 51 54
2 0 4 4 3 6 4 26 26 27 9 −3 48 49 43
2 2 5 6 4 6 6 27 28 36 9 −1 49 47 34
3 −3 6 9 10 7 −7 28 35 50 9 1 50 46 33
3 −1 7 7 7 7 −5 29 33 39 9 3 51 48 42
3 1 8 8 6 7 −3 30 31 30 9 5 52 50 53
3 3 9 10 9 7 −1 31 29 23 9 7 53 52 66
4 −4 10 15 17 7 1 32 30 22 9 9 54 54 81
4 −2 11 13 12 7 3 33 32 29 10 −10 55 66 101
4 0 12 11 8 7 5 34 34 38 10 −8 56 64 84
4 2 13 12 11 7 7 35 36 49 10 −6 57 62 69
4 4 14 14 16 8 −8 36 45 65 10 −4 58 60 56
5 −5 15 21 26 8 −6 37 43 52 10 −2 59 58 45
5 −3 16 19 19 8 −4 38 41 41 10 0 60 56 35
5 −1 17 17 14 8 −2 39 39 32 10 2 61 57 44
5 1 18 16 13 8 0 40 37 24 10 4 62 59 55
5 3 19 18 18 8 2 41 38 31 10 6 63 61 68
5 5 20 20 25 8 4 42 40 40 10 8 64 63 83
6 −6 21 27 37 8 6 43 42 51 10 10 65 65 100

It must be stated, at this point, that the 36 polynomials used, in this instance, are not those that would be ordered as in Table 5.1. That is to say, they are not the first 36 ANSI standard polynomials. As mentioned earlier, there are, unfortunately, a number of competing conventions for the numbering of Zernike polynomials. The convention used in determining the P to Vr figure is the so called Zernike Fringepolynomial convention. The logic of ordering the polynomials in a different way is that this better reflects, in the case of the fringe polynomial set, the spatial frequency content of the polynomial and its practical significance in real optical systems.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Optical Engineering Science»

Представляем Вашему вниманию похожие книги на «Optical Engineering Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Optical Engineering Science»

Обсуждение, отзывы о книге «Optical Engineering Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x