Won Y. Yang - Applied Numerical Methods Using MATLAB

Здесь есть возможность читать онлайн «Won Y. Yang - Applied Numerical Methods Using MATLAB» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Numerical Methods Using MATLAB: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Numerical Methods Using MATLAB»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new edition provides an updated approach for students, engineers, and researchers to apply numerical methods for solving problems using MATLAB This accessible book makes use of MATLAB® software to teach the fundamental concepts for applying numerical methods to solve practical engineering and/or science problems. It presents programs in a complete form so that readers can run them instantly with no programming skill, allowing them to focus on understanding the mathematical manipulation process and making interpretations of the results.
Applied Numerical Methods Using MATLAB®, Second Edition Provides examples and problems of solving electronic circuits and neural networks Includes new sections on adaptive filters, recursive least-squares estimation, Bairstow's method for a polynomial equation, and more Explains Mixed Integer Linear Programing (MILP) and DOA (Direction of Arrival) estimation with eigenvectors Aimed at students who do not like and/or do not have time to derive and prove mathematical results
is an excellent text for students who wish to develop their problem-solving capability without being involved in details about the MATLAB codes. It will also be useful to those who want to delve deeper into understanding underlying algorithms and equations.

Applied Numerical Methods Using MATLAB — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Numerical Methods Using MATLAB», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The results of various operations on these vectors/matrices are as follows (pay attention to the error message):

>A3=A1+A2, A4=A1-A2, 1+A1 % matrix/scalar addition/subtraction A3= -2 4 6 A4= 0 0 0 ans= 0 3 4 2 5 3 6 5 1 5 6 3 >AB=A1*B % matrix multiplication Error using Inner matrix dimensions must agree - фото 24matrix multiplication? Error using * Inner matrix dimensions must agree. >BA1=B*A1 % regular matrix multiplication BA1=-9 -8 -1 3 -6 -9 >AA=A1.*A2 % element-wise (term-wise) multiplication AA= 1 4 9 -8 0 2 >AB=A1.*B %AB(m, n) = A1(m, n)B(m, n) element-wise multiplication Error using .* Matrix dimensions must agree. >A1_1=pinv(A1),A1'*(A1*A1')̂-1,eye(size(A1,2))/A1 % Applied Numerical Methods Using MATLAB - изображение 25A1_1= -0.1914 0.1399 %right inverse of a 2x3 matrix A1 0.0617 0.0947 0.2284 -0.0165 >A1*A1_1 %A1/A1=I implies the validity of A5_1 as the right inverse ans= 1.0000 0.0000 0.0000 1.0000 >A5=A1'; % a 3x2 matrix >A5_1=pinv(A5),(A5'*A5)̂-1*A5',A5\eye(size(A5,1)) % Applied Numerical Methods Using MATLAB - изображение 26A5_1= -0.1914 0.0617 0.2284 %left inverse of a 3x2 matrix A5 0.1399 0.0947 -0.0165 >A5_1*A5 %A5\A5=I implies the validity of A5_1 as the left inverse ans= 1.0000 -0.0000 -0.0000 1.0000 >A1_li=(A1'*A1)̂-1*A1' %the left inverse of matrix A1 with M

1 (Q14) Does the left inverse of a matrix having rows fewer than columns exist?

2 (A14) No. There is no N × M matrix that is premultiplied on the left of an M × N matrix with M < N to yield a nonsingular matrix, far from an identity matrix. In this context, MATLAB should have rejected the above case on the ground that is singular and so its inverse does not exist. But, because the round‐off errors make a very small number appear to be a zero or a real zero appear to be a very small number (as will be mentioned in Remark 2.3), it is not easy for MATLAB to tell a near‐singularity from a real singularity. That is why MATLAB dares not to declare the singularity case and instead issues just a warning message to remind you to check the validity of the result so that it will not be blamed for a delusion. Therefore, you must be alert for the condition mentioned in Remark 1.1(2), which says that, in order for the left inverse to exist, the number of rows must not be less than the number of columns.>A1_li*A1 %No identity matrix, since A1_li isn't the left inverse ans = 1.2500 0.7500 -0.2500 -0.2500 0.5000 0.7500 1.5000 3.5000 2.5000 >det(A1'*A1) %A1 is not left-invertible for A1'*A1 is singular ans = 0

3 (cf) Let us be nice to MATLAB as it is to us. From the standpoint of promoting mutual understanding between us and MATLAB, we acknowledge that MATLAB tries to show us apparently good results to please us like always, sometimes even pretending not to be obsessed by the demon of ‘ill‐condition’ in order not to make us feel uneasy. How kind MATLAB is! But, we should be always careful not to be spoiled by its benevolence and not to accept the computing results every inch as it is. In this case, even though the matrix [A1'*A1] is singular and so not invertible, MATLAB tried to invert it and that's all. MATLAB must have felt something abnormal as can be seen from the ominous warning message prior to the computing result. Who would blame MATLAB for being so thoughtful and loyal to us? We might well be rather touched by its sincerity and smartness.

In the aformentioned statements, we see the slash( /)/backslash( \) operators. These operators are used for right/left division, respectively; B/Ais the same as B*inv(A)and A\Bis the same as inv(A)*Bwhen Ais invertible and the dimensions of Aand Bare compatible. Noting that B/Ais equivalent to (A'\B')', let us take a close look at the function of the backslash( \) operator.

>X=A1\A1 % an identity matrix? X= 1.0000 0 -0.8462 0 1.0000 1.0769 0 0 0

1 (Q13) It seems that A1\A1 should have been an identity matrix, but it is not, contrary to our expectation. Why?

2 (A13) We should know more about the various functions of the backslash( \), which can be seen by typing ‘ help slash’ into the MATLAB Command window. Let Remark 1.2 answer this question in cooperation with the next case.>A1*X-A1 %zero if X is the solution to A1*X=A1? ans= 1.0e-015 * 0 0 0 0 0 -0.4441

Remark 1.2The Function of Backslash( \) Operator

Overall, for the command ‘ A\B’, MATLAB finds a solution to the equation A*X=B. Let us denote the row/column dimension of the matrix Aby Mand N.

1 (1) If matrix A is square and upper/lower‐triangular in the sense that all of its elements below/above the diagonal are zero, then MATLAB finds the solution by applying backward/ forward substitution method (Section 2.2.1).

2 (2) If matrix A is square, symmetric (Hermitian), and positive definite, then MATLAB finds the solution by using Cholesky factorization (Section 2.4.2).

3 (3) If matrix A is square and has no special feature, then MATLAB finds the solution by using lower‐upper (LU) decomposition (Section 2.4.1).

4 (4) If matrix A is rectangular, then MATLAB finds a solution by using QR factorization (Section 2.4.2). In case A is rectangular and of full rank with rank( A) = min( M, N), it will be the least‐squares (LSs) solution (Eq. (2.1.10)) for M> N (over‐determined case) and one of the many solutions that is not always the same as the minimum‐norm solution (Eq. (2.1.7)) for M< N (under‐determined case). But for the case where A is rectangular and has rank deficiency, what MATLAB gives us may be useless. Therefore, you must pay attention to the warning message about rank deficiency, which might tell you not to count on the dead‐end solution made by the backslash(\) operator. To find an alternative in the case of rank deficiency, you had better resort to the singular value decomposition (SVD) (see Problem 2.8 for details).

For the moment, let us continue to try more operations on matrices.

>A1./A2 % termwise right division ans= 1 1 1 -2 Inf 2 >A1.\A2 % termwise left division ans= 1 1 1 -0.5 0 0.5 >format rat, B̂-1 %represent the numbers (of B‐1

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Numerical Methods Using MATLAB»

Представляем Вашему вниманию похожие книги на «Applied Numerical Methods Using MATLAB» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Numerical Methods Using MATLAB»

Обсуждение, отзывы о книге «Applied Numerical Methods Using MATLAB» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x