Iain Pardoe - Applied Regression Modeling

Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Regression Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the fundamentals of regression without learning calculus with this one-stop resource The newly and thoroughly revised 3rd Edition of
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.

Applied Regression Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Regression Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Table of Contents 1 Cover 2 Applied Regression Modeling Applied Regression - фото 1

Table of Contents

1 Cover

2 Applied Regression Modeling Applied Regression Modeling Third Edition Iain Pardoe Thompson Rivers University The Pennsylvania State University

3 Copyright

4 Dedication

5 Preface

6 Acknowledgments

7 Introduction

8 About the Companion Website

9 Chapter 1: Foundations 1.1 Identifying and Summarizing Data 1.2 Population Distributions 1.3 Selecting Individuals at Random—Probability 1.4 Random Sampling 1.5 Interval Estimation 1.6 Hypothesis Testing 1.7 Random Errors and Prediction 1.8 Chapter Summary

10 Chapter 2: Simple Linear Regression 2.1 Probability Model for and 2.2 Least Squares Criterion 2.3 Model Evaluation 2.4 Model Assumptions 2.5 Model Interpretation 2.6 Estimation and Prediction 2.7 Chapter Summary

11 Chapter 3: Multiple Linear Regression 3.1 Probability Model for (X1, X2, …) and Y 3.2 Least Squares Criterion 3.3 Model Evaluation 3.4 Model Assumptions 3.5 Model Interpretation 3.6 Estimation and Prediction 3.7 Chapter Summary

12 Chapter 4: Regression Model Building I 4.1 Transformations 4.2 Interactions 4.3 Qualitative Predictors 4.4 Chapter Summary

13 Chapter 5: Regression Model Building II 5.1 Influential Points 5.2 Regression Pitfalls 5.3 Model Building Guidelines 5.4 Model Selection 5.5 Model Interpretation Using Graphics 5.6 Chapter Summary

14 Bibliography

15 Glossary

16 Index

17 End User License Agreement

List of Tables

1 Chapter 3Table 3.1 Shipping data with response variable картинка 2weekly labor hours and four p...

2 Chapter 4Table 4.1 TV commercial data: Applied Regression Modeling - изображение 3spending in $m, Applied Regression Modeling - изображение 4millions of retained impress...Table 4.2 Car data with картинка 5city miles per gallon, Applied Regression Modeling - изображение 6engine size in liters, for

3 Chapter 5Table 5.1 Car data with Applied Regression Modeling - изображение 7miles per gallon, Applied Regression Modeling - изображение 8size (l), Applied Regression Modeling - изображение 9of cylinders, Applied Regression Modeling - изображение 10pass...Table 5.2 Computer component data.Table 5.3 Simulated dataset containing missing values.Table 5.4 Some automated model selection results for the SIMULATEdata fileTable 5.5 Credit card data to illustrate model interpretation using predictor...

List of Illustrations

1 Chapter 1 Figure 1.1 Histogram for home prices example. Figure 1.2 Histogram for a simulated population of картинка 11sale prices, together w... Figure 1.3 Standard normal density curve together with a shaded area of картинка 12be... Figure 1.4 QQ‐plot for the home prices example. Figure 1.5 The central limit theorem in action. The upper density curve (a) ... Figure 1.6 Home prices example—density curve for the t‐distribution with картинка 13d... Figure 1.7 Relationships between critical values, significance levels, test ... Figure 1.8 Relationships between critical values, significance levels, test ...

2 Chapter 2 Figure 2.1 (a)–(d) Different kinds of association between sale price and flo... Figure 2.2 Scatterplot showing the simple linear regression model for the ho... Figure 2.3 Linear equation for the simple linear regression model. Figure 2.4 Illustration of the least squares criterion for the simple linear... Figure 2.5 Simple linear regression model fitted to sample data for the home... Figure 2.6 How well does the model fit each dataset?Figure 2.7 Interpretation of the regression standard error for simple linear...Figure 2.8 Measures of variation used to derive the coefficient of determina...Figure 2.9 Examples of картинка 14values for a variety of scatterplots.Figure 2.10 Examples of correlation values and corresponding картинка 15values for a ...Figure 2.11 Simple linear regression model fitted to hypothetical population...Figure 2.12 Illustration of the sampling distribution of the slope for the s...Figure 2.13 Scatterplot illustrating random error probability distributions....Figure 2.14 Examples of residual plots for which the four simple linear regr...Figure 2.15 Examples of residual plots for which the four simple linear regr...Figure 2.16 Examples of histograms of residuals for which the normality regr...Figure 2.17 Examples of QQ‐plots of residuals for which the normality regres...Figure 2.18 Simple linear regression model for the home prices–floor size ex...Figure 2.19 Scatterplot illustrating confidence intervals for the mean, картинка 16, a...Figure 2.20 Scatterplot of картинка 17standing height (in cm) and картинка 18upper arm length ...Figure 2.21 Residual plot for the body measurements example.Figure 2.22 Histogram and QQ‐plot of residuals for the body measurements exa...Figure 2.23 Scatterplot of картинка 19versus картинка 20for the body measurements example with...Figure 2.242.24 Examples of residual plots for Problem 14.Figure 2.252.25 Examples of QQ‐plots for Problem 14.

3 Chapter 3Figure 3.1 Multiple linear regression model with two predictors fitted to a ...Figure 3.2 Scatterplot matrix for the home prices example.Figure 3.3 Scatterplot of simulated data with low correlation between картинка 21

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Regression Modeling»

Представляем Вашему вниманию похожие книги на «Applied Regression Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Regression Modeling»

Обсуждение, отзывы о книге «Applied Regression Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x