Iain Pardoe - Applied Regression Modeling
Здесь есть возможность читать онлайн «Iain Pardoe - Applied Regression Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Applied Regression Modeling
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Applied Regression Modeling: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Regression Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
delivers a concise but comprehensive treatment of the application of statistical regression analysis for those with little or no background in calculus. Accomplished instructor and author Dr. Iain Pardoe has reworked many of the more challenging topics, included learning outcomes and additional end-of-chapter exercises, and added coverage of several brand-new topics including multiple linear regression using matrices.
The methods described in the text are clearly illustrated with multi-format datasets available on the book's supplementary website. In addition to a fulsome explanation of foundational regression techniques, the book introduces modeling extensions that illustrate advanced regression strategies, including model building, logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series forecasting. Illustrations, graphs, and computer software output appear throughout the book to assist readers in understanding and retaining the more complex content.
covers a wide variety of topics, like:
Simple linear regression models, including the least squares criterion, how to evaluate model fit, and estimation/prediction Multiple linear regression, including testing regression parameters, checking model assumptions graphically, and testing model assumptions numerically Regression model building, including predictor and response variable transformations, qualitative predictors, and regression pitfalls Three fully described case studies, including one each on home prices, vehicle fuel efficiency, and pharmaceutical patches Perfect for students of any undergraduate statistics course in which regression analysis is a main focus,
also belongs on the bookshelves of non-statistics graduate students, including MBAs, and for students of vocational, professional, and applied courses like data science and machine learning.
weekly labor hours and four p...
spending in $m,
millions of retained impress...Table 4.2 Car data with
city miles per gallon,
engine size in liters, for
miles per gallon,
size (l),
of cylinders,
pass...Table 5.2 Computer component data.Table 5.3 Simulated dataset containing missing values.Table 5.4 Some automated model selection results for the SIMULATEdata fileTable 5.5 Credit card data to illustrate model interpretation using predictor...
sale prices, together w... Figure 1.3 Standard normal density curve together with a shaded area of
be... Figure 1.4 QQ‐plot for the home prices example. Figure 1.5 The central limit theorem in action. The upper density curve (a) ... Figure 1.6 Home prices example—density curve for the t‐distribution with
d... Figure 1.7 Relationships between critical values, significance levels, test ... Figure 1.8 Relationships between critical values, significance levels, test ...
values for a variety of scatterplots.Figure 2.10 Examples of correlation values and corresponding
values for a ...Figure 2.11 Simple linear regression model fitted to hypothetical population...Figure 2.12 Illustration of the sampling distribution of the slope for the s...Figure 2.13 Scatterplot illustrating random error probability distributions....Figure 2.14 Examples of residual plots for which the four simple linear regr...Figure 2.15 Examples of residual plots for which the four simple linear regr...Figure 2.16 Examples of histograms of residuals for which the normality regr...Figure 2.17 Examples of QQ‐plots of residuals for which the normality regres...Figure 2.18 Simple linear regression model for the home prices–floor size ex...Figure 2.19 Scatterplot illustrating confidence intervals for the mean,
, a...Figure 2.20 Scatterplot of
standing height (in cm) and
upper arm length ...Figure 2.21 Residual plot for the body measurements example.Figure 2.22 Histogram and QQ‐plot of residuals for the body measurements exa...Figure 2.23 Scatterplot of
versus
for the body measurements example with...Figure 2.242.24 Examples of residual plots for Problem 14.Figure 2.252.25 Examples of QQ‐plots for Problem 14.