Jane M. Horgan - Probability with R

Здесь есть возможность читать онлайн «Jane M. Horgan - Probability with R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Probability with R: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability with R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language 
is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in 
cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. 
Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. 
This second edition includes:
improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book.
Primarily addressed to students of computer science and related areas, 
is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.

Probability with R — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Probability with R», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
that best fits the data The output is Call lmformula prog2prog1 - фото 154

that best fits the data.

The output is

Call: lm(formula = prog2∼prog1) Coefficients: (Intercept) prog1 -5.455 0.960

Therefore, the line that best fits these data is

To draw this line on the scatter diagram write plotprog2 prog1 - фото 155

To draw this line on the scatter diagram, write

plot(prog2, prog1) abline(lm(prog2∼prog1))

which gives Fig. 3.16.

Figure 316The Line of Best Fit The line of best fit may be used to make - фото 156

Figure 3.16The Line of Best Fit

The line of best fit may be used to make predictions. For example, we might be able to predict how students will do in Semester 2 from the results that they obtained in Semester 1. If the mark on Programming 1 for a particular student is 70, that student would be expected to do well also in Programming 2, estimated to obtain A student doing badly in Programming 1 30 say would also be expected to do - фото 157. A student doing badly in Programming 1, 30 say, would also be expected to do badly in Programming 2. These predictions may not be exact but if the linear trend is strong and - фото 158. These predictions may not be exact but, if the linear trend is strong and past trends continue, they will be reasonably close.

A word of warning is appropriate here. The estimated values are based on the assumption that the past trend continues. This may not always be the case. For example, students who do badly in Semester 1, may get such a shock that they work harder in Semester 2, and change the pattern. Similarly, students getting high marks in Semester 1 may be lulled into a sense of false security and take it easy in Semester 2. Consequently, they may not do as well as expected. Hence, the Semester 1 trends may not continue, and the model may no longer be valid.

3.6 MACHINE LEARNING AND THE LINE OF BEST FIT

Machine learning is the science of getting computer systems to use algorithms and statistical models to study patterns and learn from data. Supervised learning is the machine learning task of using past data to learn a function in order to predict a future output.

The line of best fit is one of the many techniques that machine learning has borrowed from the field of Probability and Statistics to “train” the machine to make predictions. In this case of what is also known as the simple linear regression line in statistics, a set of pairs картинка 159of data is obtained, картинка 160is referred to as the independent variable, and картинка 161is the dependent variable. The objective is to estimate Probability with R - изображение 162from Probability with R - изображение 163. The line of best fit, Probability with R - изображение 164, is obtained by choosing the intercept картинка 165and slope картинка 166so that the sum of the squared distances from the observed картинка 167to the estimated картинка 168is minimized. The algebraic details of the derivations of картинка 169and картинка 170are given in Appendix B.

Often, the data for supervised learning are randomly divided into two parts, one for training and the other for testing. In machine learning, we derive the line of best fit from the training set

The testing set is used to see how well the line actually fits Usually an - фото 171

The testing set is used to see how well the line actually fits. Usually, an картинка 172breakdown of the data is made, the 80% is used for “training,” that is, to obtain the line, and the 20% is used to decide if the line really fits the data, and to ascertain if the model is appropriate for future predictions. The model is updated as new data become available.

Example 3.1

Suppose there are 50 pairs картинка 173of observations available for obtaining the line that best fits the data in order to predict картинка 174from картинка 175. The data are randomly divided into the training set and testing set, using 40 observations for training ( Table 3.1), and 10 for testing ( Table 3.2).

TABLE 3.1The Training Set

Observation Numbers картинка 176 картинка 177 Observation Numbers картинка 178 картинка 179
1 11.8 31.3 21 15.1 80.1
2 10.8 59.9 22 14.7 66.9
3 8.6 27.6 23 10.5 42.0
4 10.3 57.7 24 10.9 72.9
5 8.5 50.2 25 11.6 67.8
6 11.6 52.1 26 9.1 45.3
7 14.4 79.1 27 5.4 30.2
8 8.6 32.3 28 8.8 49.6
9 12.4 58.8 29 11.2 44.3
10 14.9 79.5 30 7.4 46.1
11 8.9 57.0 31 7.9 45.1
12 8.7 35.1 32 12.2 46.5
13 11.7 68.2 33 8.5 42.7
14 11.4 60.1 34 9.3 56.3
15 8.8 44.5 35 10.0 27.4
16 5.9 28.9 36 3.8 20.2
17 13.5 75.8 37 14.9 68.5
18 8.7 48.7 38 12.4 72.6
19 11.0 54.7 39 11.1 54.3
20 8.3 32.8 40 8.9 38.5

TABLE 3.2The Testing Set

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Probability with R»

Представляем Вашему вниманию похожие книги на «Probability with R» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Probability with R»

Обсуждение, отзывы о книге «Probability with R» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x