F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where [0 D ] denotes a straight segment collinear with [0 A ], see Fig. 3.2b. In view of Eqs. (3.59)and (3.61), one realizes that

(3.62) referring to Fig 32f as long as L 0D L 0I note that 0 I denotes a - фото 797

referring to Fig. 3.2f, as long as L [0D] = L [0I]; note that [0 I ] denotes a segment normal to [0 A ], with [0 AHI ] denoting a rectangle and S [0AHI]its area. By the same token, consider

(3.63) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 798

as per Fig. 3.2c, with L [0F]denoting length of straight segment [0 F ] coinciding with w, such that its (orthogonal) projection over ulooks like

(3.64) where 0 E denotes a straight segment in Fig 32c and 0 M denotes a - фото 799

– where [0 E ] denotes a straight segment in Fig. 3.2c, and [0 M ] denotes a straight segment in Fig. 3.2g that has the same length of [0 E ] but is normal to [0 A ]. Ordered multiplication of Eqs. (3.59)and (3.64)unfolds

(3.65) where 0 ALM denotes the rectangle in Fig 32g Consider now the sum of vand - фото 800

where [0 ALM ] denotes the rectangle in Fig. 3.2g. Consider now the sum of vand w, as sketched in Fig. 3.2a – with length equal to L [0C], where [0 C ] denotes the straight segment coinciding with v + w ; the (orthogonal) projection of v + w on uis given by

(3.66) according to Fig 32d where straight segment 0 G is collinear with 0 A - фото 801

according to Fig. 3.2d, where straight segment [0 G ] is collinear with [0 A ] – and straight segment [0 J ] is perpendicular thereto, while sharing the same length with [0 G ], see Fig. 3.2h. Consequently,

(3.67) based on Eqs 359and 366 where rectangle 0 AKJ is laid out in Fig - фото 802

based on Eqs. (3.59)and (3.66)– where rectangle [0 AKJ ] is laid out in Fig. 3.2h. Based on geometrical decomposition

(3.68) see Fig 32eh hence one concludes that 369 stemming from Eqs - фото 803

– see Fig. 3.2e–h; hence, one concludes that

(3.69) stemming from Eqs 362 365 367 and 368 In view of Eq 353 - фото 804

stemming from Eqs. (3.62), (3.65), (3.67), and (3.68). In view of Eq. (3.53), one finally reaches

(3.70) usually referred to as distributive property of scalar product of vectors - фото 805

– usually referred to as distributive property of scalar product of vectors, over vector addition on the right. The above graphical analysis emphasizes that the scalar product of two vectors is equivalent to the area of a rectangle, with one side defined by one such vectors and another side defined by the normal projection of the other vector onto the former; this is apparent in Fig. 3.2f for u · v , in Fig. 3.2g for u · w , and in Fig. 3.2h for u · ( v + w ). The aforementioned distributive property is thus a consequence of the additivity of areas of juxtaposed rectangles – see Fig. 3.2h for area of rectangle representing u · ( v + w ) and Fig. 3.2e for equivalent overall areas representing u · v and u · w . In view of the property conveyed by Eq. (3.58), one may also write

(3.71) so combination with Eq 370transforms it to 372 a second application of - фото 806

so combination with Eq. (3.70)transforms it to

(3.72) a second application of the said commutative property allows transformation of - фото 807

a second application of the said commutative property allows transformation of Eq. (3.72)to

(3.73) or after renaming v w and u as u v and w respectively 374 so the - фото 808

or, after renaming v , w and u as u , v and w , respectively,

(3.74) so the scalar product of vectors is also distributive over vector addition on - фото 809

– so the scalar product of vectors is also distributive over vector addition on the left.

Figure 32 Graphical representation of a vectors u v and w and of sum v - фото 810

Figure 3.2 Graphical representation of (a) vectors u, v, and w, and of sum, v + w , of vwith w; (b) projection of vonto uwith magnitude equal to length, L [0D], of straight segment [0 D ]; (c) projection of wonto uwith magnitude equal to length, L [0E], of straight segment [0 E ]; (d) projection of v + w onto uwith magnitude equal to length, L [0G], of straight segment [0 G ]; (e) sum of u · v , given by area, A [0AHI], of rectangle [0 AHI ], with u · w , given by area, A[HIJK] , of rectangle [HIJK] ; (f) scalar product, u · v , of uby v, given by area, A [0AHI], of rectangle [0 AHI ]; (g) scalar product, u· w, of uby w, given by area, A [0ALM], of rectangle [0 ALM ]; and (h) scalar product, u · ( v + w ), of uby v + w , given by area, S [0AKJ], of rectangle [0 AKJ ].

Multiple products are also possible; consider first the scalar product of two vectors combined with the product of scalar by vector, say,

(3.75) for which Eq 353was retrieved with Eq 22assuring s s besides - фото 811

for which Eq. (3.53)was retrieved – with Eq. (2.2)assuring | s | = s , besides ∠ s u, v= ∠ u, vwhen s is positive. Conversely, s < 0 implies | s | = − s also via Eq. (2.2), while ∠ s u, v= π + ∠ u, vas the direction of su appears reversed relative to the original direction of u– thus implying cos{∠ s u, v} = cos π cos {∠ u, v} − sin π sin {∠ u, v} as per Eq. (2.325), where cos π = − 1 and sin π = 0 support, in turn, simplification to cos{∠ s u, v} = − cos {∠ u, v}. Therefore, one would write

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x