F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.111) here sin u v denotes sine of the smaller angle formed by vectors uand v - фото 849

here sin{∠ u, v} denotes sine of (the smaller) angle formed by vectors uand v– and ndenotes unit vector normal to the plane containing uand v, and oriented such that u, v, and nform a right‐handed system. As will be proven in due time, the area, S , of a parallelogram with sides accounted for by uand vis given by the product of its base, ‖ u‖, by its heigth – which is, in turn, obtained as the projection of vonto u ⊥, i.e. ‖ v‖ sin {∠ u, v}, as given by

(3.112) hence Eq 3111can be rewritten as 3113 meaning that the vector product - фото 850

hence, Eq. (3.111)can be rewritten as

(3.113) meaning that the vector product defines the vector area Sn of the portion of - фото 851

meaning that the vector product defines the vector area, Sn , of the portion of plane bounded by vectors uand v. The definition conveyed by Eq. (3.111)implies that the vector product is nil for two collinear vectors, because the sine of the angle formed thereby is nil; hence, the vector product being nil does not necessarily imply that at least one of the factors is a nil vector itself.

The vector product is not commutative; in fact,

(3.114) stemming from Eq 3111 where n appears because the vector system is now - фото 852

stemming from Eq. (3.111), where −n appears because the vector system is now left handed; Eq. (3.114)may thus be rewritten as

(3.115) due to commutativity of the product of scalars so one eventually finds 3116 - фото 853

due to commutativity of the product of scalars, so one eventually finds

(3.116) which means that the vector product is actually anticommutative Consider now - фото 854

– which means that the vector product is actually anticommutative.

Consider now vectors u, v, and was depicted in Fig. 3.4a. Equation (3.59)still holds, relating ‖ u‖ to L [0A], as well as Eq. (3.111)pertaining to u× v, while one has that

(3.117) as per Fig 34b where BD with length L BD denotes a straight segment - фото 855

as per Fig. 3.4b – where [ BD ], with length L [BD], denotes a straight segment opposed to ∠ u, vand obtained after projection of vonto u ⊥. Consequently,

(3.118) based on Eqs 359 3112 and 3117 and illustrated in Fig 34f By - фото 856

based on Eqs. (3.59), (3.112), and (3.117)– and illustrated in Fig. 3.4f. By the same token,

(3.119) as per Fig 34c where EF denotes a straight segment opposed to u wand - фото 857

as per Fig. 3.4c, where [ EF ] denotes a straight segment opposed to ∠ u, wand obtained via projection of wonto u ⊥; therefore,

(3.120) stemming from Eqs 359 3112 and 3119 and apparent in Fig 34g - фото 858

stemming from Eqs. (3.59), (3.112), and (3.119)– and apparent in Fig. 3.4g. Finally,

(3.121) as per Fig 34d where CG denotes a straight segment opposed to u v - фото 859

as per Fig. 3.4d, where [ CG ] denotes a straight segment opposed to ∠ u, v+ wand generated through projection of v + w onto u ⊥; hence,

(3.122) in agreement with Fig 34h and based on Eqs 359 3112 and 3121 as - фото 860

in agreement with Fig. 3.4h and based on Eqs. (3.59), (3.112), and (3.121)– as represented in Fig. 3.4h. One may thus add the areas of the parallelograms in Figs. 3.4f and 3.4g to get

(3.123) as emphasized in Fig 34e via plain juxtaposition of the said parallelograms - фото 861

as emphasized in Fig. 3.4e via plain juxtaposition of the said parallelograms, with S [BCKJ]= S [0AHF]. However, triangles [0 BJ ] and [ ACK ] are identical as per Fig. 3.4i, owing to the geometrical features of parallelograms – i.e. [0 B ] and [ AC ] are parallel and share the same length, and the same applies to [ BJ ] and [ CK ]; hence, [0 J ] and [ AK ] must also be parallel, and have identical length. One accordingly concludes that

(3.124) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 862

while Eqs. (3.118)and (3.120)allow transformation of Eq. (3.123)to

(3.125) Recalling Eq 3111 one may redo Eq 3125to 3126 or else 3127 - фото 863

Recalling Eq. (3.111), one may redo Eq. (3.125)to

(3.126) or else 3127 upon addition and subtraction of S 0BJ and the aid of Eq - фото 864

or else

(3.127) upon addition and subtraction of S 0BJ and the aid of Eq 3124 the - фото 865

upon addition and subtraction of S [0BJ], and the aid of Eq. (3.124); the right-hand side of Eq. (3.127)is illustrated as [0 AKJ ] in Fig. 3.4i – which coincides in area with S [0AIC]as in Fig. 3.4h, so one concludes that

(3.128) following combination with Eqs 3111and 3122 Therefore the vector - фото 866

following combination with Eqs. (3.111)and (3.122). Therefore, the vector product is distributive on the right with regard to addition of vectors. In what concerns the other possibility, Eq. (3.116)allows one to write

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x