F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.76) starting once more from Eq 353 For conveying the same final result Eqs - фото 812

starting once more from Eq. (3.53). For conveying the same final result, Eqs. (3.75)and (3.76)can be condensed into the simpler version:

(3.77) therefore the dot product of the scalar multiple of a vector by another vector - фото 813

therefore, the dot product of the scalar multiple of a vector by another vector ends up being equal to the product of the said scalar by the dot product of the two vectors. A similar reasoning would allow one to write

(3.78) at the expense of the algorithm labeled as Eq 353 coupled with the - фото 814

at the expense of the algorithm labeled as Eq. (3.53), coupled with the commutative property of product of scalars; Eq. (3.78)is obviously equivalent to

(3.79) after using Eq 353backward Since the scalar product of vector is itself a - фото 815

after using Eq. (3.53)backward.

Since the scalar product of vector is itself a scalar, one may attempt to compute

(3.80) stemming from Eq 353 umay in turn appear as 381 where j udenotes a - фото 816

stemming from Eq. (3.53); umay, in turn, appear as

(3.81) where j udenotes a unit vector colinear with u Algebraic rearrangement - фото 817

where j udenotes a unit vector colinear with u. Algebraic rearrangement resorting to Eq. (3.33)yields

(3.82) from Eq 381 whereas the associative property of multiplication of scalars - фото 818

from Eq. (3.81), whereas the associative property of multiplication of scalars unfolds

(3.83) upon multiplication and division by cos v w Eq 383becomes 384 - фото 819

upon multiplication and division by cos{∠ v, w}, Eq. (3.83)becomes

(3.84) with the aid also of the commutative property of multiplication of scalars - фото 820

with the aid also of the commutative property of multiplication of scalars. Recalling Eq. (3.53), one may reformulate Eq. (3.84)to

(3.85) one promptly concludes that 386 because the vector in the righthand side - фото 821

one promptly concludes that

(3.86) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 822

because the vector in the right‐hand side of Eq. (3.85)has length equal to ‖ w‖ multiplied by correction factor Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 823rather than simply ‖ w‖ as in Eq. (3.86)– and its direction is that of vector u(via j u), rather than that of vector w(or of unit vector j w, for that matter) also as in Eq. (3.86). Therefore, one may in general state that

(3.87) this means that the scalar product of vectors is not associative with regard to - фото 824

this means that the scalar product of vectors is not associative with regard to the product of scalar by vector.

Although the definition as per Eq. (3.53), or a graphical support (as done above) may be utilized to infer all properties of the scalar product of vectors, either approach may prove cumbersome in routine analysis – so a handier mode of calculation would be welcome. Toward this goal, one may resort to the coordinate‐based forms of vectors uand vlabeled as Eqs. (3.1)and (3.2), i.e.

(3.88) In view of Eq 370 one can convert Eq 388to 389 and a further - фото 825

In view of Eq. (3.70), one can convert Eq. (3.88)to

(3.89) and a further application of the said distributive property unfolds 390 - фото 826

and a further application of the said distributive property unfolds

(3.90) Equations 333and 338permit transformation of Eq 390to 391 or - фото 827

Equations (3.33)and (3.38)permit transformation of Eq. (3.90)to

(3.91) or due to Eq 358 392 Recalling Eq 355 one realizes that 393 - фото 828

– or, due to Eq. (3.58),

(3.92) Recalling Eq 355 one realizes that 393 because vectors j x j y and - фото 829

Recalling Eq. (3.55), one realizes that

(3.93) because vectors j x j y and j zhave unit length by definition on the other - фото 830

because vectors j x, j y, and j zhave unit length by definition; on the other hand,

(3.94) because each pair of indicated vectors are orthogonal to each other so the - фото 831

because each pair of indicated vectors are orthogonal to each other – so the cosine of their angle is nil, as per Eq. (3.56). Combination with Eqs. (3.93)and (3.94)permits simplification of Eq. (3.92)to just

(3.95) or in condensed form 396 where i stands for x i 1 y i 2 or z - фото 832

or, in condensed form,

(3.96) where i stands for x i 1 y i 2 or z i 3 Equation 395is of - фото 833

where i stands for x ( i = 1), y ( i = 2), or z ( i = 3). Equation (3.95)is of particular relevance,since it allows calculation of the dot product based solely on the coordinates of its vector factors – without the need to explicitly know the angle between them or their magnitude; while providing a basic relationship of scalar product to the definition provided by Eq. (3.52)(as will soon be seen). Once in possession of Eq. (3.95), one realizes that

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x