F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

One finally realizes that

(3.39) in view of Eq 319 which becomes 340 as per Eq 330 the - фото 774

in view of Eq. (3.19), which becomes

(3.40) as per Eq 330 the distributive property of multiplication of scalars has - фото 775

as per Eq. (3.30); the distributive property of multiplication of scalars has it that

(3.41) where Eq 319taken backward supports conversion to 342 Equation - фото 776

where Eq. (3.19)taken backward supports conversion to

(3.42) Equation 322finally permits transformation of Eq 342to 343 which - фото 777

Equation (3.22)finally permits transformation of Eq. (3.42)to

(3.43) which prompts 344 once Eqs 31and 32are recalled hence - фото 778

which prompts

(3.44) once Eqs 31and 32are recalled hence multiplication of scalar by vector - фото 779

once Eqs. (3.1)and (3.2)are recalled; hence, multiplication of scalar by vector is distributive with regard to addition of vectors.

On the other hand, Eq. (3.1)entails

(3.45) which is equivalent to 346 due to Eq 330 the distributive property of - фото 780

which is equivalent to

(3.46) due to Eq 330 the distributive property of multiplication of scalars may - фото 781

due to Eq. (3.30); the distributive property of multiplication of scalars may again be invoked to write

(3.47) whereas Eq 319justifies transformation to 348 Recalling Eq 322 it - фото 782

whereas Eq. (3.19)justifies transformation to

(3.48) Recalling Eq 322 it is possible to convert Eq 348to 349 which can - фото 783

Recalling Eq. (3.22), it is possible to convert Eq. (3.48)to

(3.49) which can be combined with Eq 330to yield 350 Eq 31finally permits - фото 784

which can be combined with Eq. (3.30)to yield

(3.50) Eq 31finally permits condensation to 351 thus proving that - фото 785

Eq. (3.1)finally permits condensation to

(3.51) thus proving that multiplication of scalar by vector is distributive also with - фото 786

thus proving that multiplication of scalar by vector is distributive also with regard to addition of scalars.

3.3 Scalar Multiplication of Vectors

The scalar (or inner) product of vectors – which may be represented by

(3.52) is formally defined as 353 here u and v denote lengths of vectors - фото 787

is formally defined as

(3.53) here u and v denote lengths of vectors uand v respectively and cos u - фото 788

here ‖ u‖ and ‖ v‖ denote lengths of vectors uand v, respectively, and cos{∠ u, v} denotes cosine of (the smaller) angle formed by vectors uand v. If Eq. (3.53)is rewritten as

(3.54) then the scalar product can be viewed as the product of the length of uby the - фото 789

then the scalar product can be viewed as the product of the length of uby the length of the projection of vover u– see Eq. (2.288); in other words, the scalar product represents a length of vector uafter multiplication by scaling factor ‖ v‖ cos {∠ u, v}. As a consequence of Eq. (3.53), one has that

(3.55) because cos 0 is equal to unity On the other hand the definition provided by - фото 790

because cos 0 is equal to unity. On the other hand, the definition provided by Eq. (3.53)implies that the scalar product is nil for two orthogonal vectors, i.e.

(3.56) since the cosine of their angle is nil hence the scalar product being nil - фото 791

– since the cosine of their angle is nil; hence, the scalar product being nil does not necessarily imply that at least one of the factors is a nil vector. In general, the scalar product of two collinear vectors is merely given by the product of their lengths – with Eq. (3.55)being a particular case of this statement.

Since Eq. (3.53)may be rewritten as

(3.57) due to commutativity of the product of scalars so one eventually finds that - фото 792

due to commutativity of the product of scalars, so one eventually finds that

(3.58) after taking Eq 353into account so the scalar product is itself - фото 793

after taking Eq. (3.53)into account – so the scalar product is itself commutative; note that the smaller angle formed by two vectors is not changed when their order is reversed.

The scalar product is distributive on the right with regard to addition – as graphically illustrated in Fig. 3.2. Consider first vector uas in Fig. 3.2a, with length given by

(3.59) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 794

where [0 A ] denotes a straight segment coinciding therewith – and likewise

(3.60) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 795

with [0 B ] overlaid on v; the (orthogonal) projection of von uwill then exhibit length given by

(3.61) where 0 D denotes a straight segment collinear with 0 A see Fig 32b - фото 796

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x