F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Following a similar rationale, one may calculate the inverse hyperbolic tangent – by, once again, setting

(2.580) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 708

at startup, in parallel to Eq. (2.566)– thus implying that

(2.581) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 709

as per composition of functions; consequently,

(2.582) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 710

owing to Eqs. (2.482)and (2.581), which becomes

(2.583) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 711

after elimination of denominator. Upon insertion of Eq. (2.581), one obtains

(2.584) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 712

from Eq. (2.511),with x replaced by y – which readily becomes

(2.585) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 713

only the plus sign preceding the square root was taken here, because sech y only takes positive values (see Fig. 2.14c). One may now revisit Eq. (2.479)as

(2.586) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 714

at the expense of Eq. (2.583), along with factoring out of cosh y ; in view of Eq. (2.487), one may redo Eq. (2.586)to

(2.587) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 715

where insertion of Eq. (2.585)permits further transformation to

(2.588) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 716

Since a difference of squares is expressible as the product of two conjugate binomials, Eq. (2.588)unfolds

(2.589) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 717

or else

(2.590) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 718

after cancelation of Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 719between numerator and denominator; following application of logarithms to both sides, Eq. (2.590)turns to

(2.591) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 720

where Eqs. (2.25)and (2.580)support final transformation to

(2.592) defined for x 1 only so as to guarantee a positive argument for the - фото 721

– defined for ∣ x ∣ < 1 only, so as to guarantee a positive argument for the logarithm. Equation (2.592)is illustrated in Fig. 2.15b; note the monotonically increasing pattern of tanh −1 x , spanning] 1,1[ as domain; at either x = − 1 or x = 1, a vertical asymptote arises – according to

(2.593) that drives the curve toward at x 1 coupled with 2594 that drives - фото 722

that drives the curve toward −∞ at x = − 1, coupled with

(2.594) that drives the curve toward at x 1 The inverse hyperbolic cotangent may - фото 723

that drives the curve toward at x = 1.

The inverse hyperbolic cotangent may be obtained after applying the hyperbolic tangent operator to both sides of Eq. (2.592), namely,

(2.595) once reciprocals are taken of both sides Eq 2595becomes 2596 also - фото 724

once reciprocals are taken of both sides, Eq. (2.595)becomes

(2.596) also with the aid of Eq 2483 Division of both numerator and denominator - фото 725

– also with the aid of Eq. (2.483). Division of both numerator and denominator of the argument of the logarithm function by x converts Eq. (2.596)to

(2.597) where a change of variable to is in order ie 2598 - фото 726

where a change of variable to is in order ie 2598 all is left is taking the inverse hyperbolic - фото 727is in order, i.e.

(2.598) all is left is taking the inverse hyperbolic cotangent of both sides according - фото 728

all is left is taking the inverse hyperbolic cotangent of both sides, according to

(2.599) where retrieval of the original dummy variable x unfolds 2600 Equation - фото 729

where retrieval of the original (dummy) variable x unfolds

(2.600) Equation 2600is depicted in Fig 215b it is not defined within 11 - фото 730

Equation (2.600)is depicted in Fig. 2.15b; it is not defined within [ 1,1] since x – 1 < 0 in that range would compromise existence of the logarithm. Outside said range, one notices that

(2.601) based on Eq 2600 so x 1 drives the behavior of cotanh 1 x toward - фото 731

based on Eq. (2.600)– so x = −1 drives the behavior of cotanh −1 x toward −∞, in the neighborhood of 1; by the same token,

(2.602) so cotanh 1 x tends to positive infinite when x 1 is approached meaning - фото 732

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x