F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.17) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 751

with the equal sign holding when uand vare collinear with the same orientation; coupled with

(3.18) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 752

with the equal sign holding again when uand vare collinear and point in the same direction. Here ∠ u, vand ∠ u, u+ vdenote the angles formed by vectors uand v, and by vectors uand u + v , respectively. Since such coordinates are simply the normal projection of the vector at stake onto the corresponding Cartesian axes, addition of two vectors corresponds to merely adding the homologous coordinates, i.e.

(3.19) based on Eqs 31and 32 both these statements are apparent from - фото 753

based on Eqs. (3.1)and (3.2); both these statements are apparent from inspection of Fig. 3.1a.

Figure 31 Graphical representation of a addition of two vectors uand v and - фото 754

Figure 3.1 Graphical representation of (a) addition of two vectors, uand v, and (b) multiplication of scalar α by vector u.

Addition of vectors is commutative – since, according to Eq. (3.19),

(3.20) this is equivalent to 321 as per the commutative property of addition of - фото 755

this is equivalent to

(3.21) as per the commutative property of addition of scalars so 322 following - фото 756

as per the commutative property of addition of scalars – so

(3.22) following combination of Eqs 319and 321 Given a third vector w defined - фото 757

following combination of Eqs. (3.19)and (3.21).

Given a third vector w– defined as

(3.23) one may recall Eqs 31 32 and 319to write 324 because of the - фото 758

one may recall Eqs. (3.1), (3.2), and (3.19)to write

(3.24) because of the commutative property of vector addition as per Eq 322 one - фото 759

because of the commutative property of vector addition as per Eq. (3.22), one can rewrite Eq. (3.24)as

(3.25) whereas Eq 319leads to 326 with the aid of Eqs 31 32 and - фото 760

whereas Eq. (3.19)leads to

(3.26) with the aid of Eqs 31 32 and 323 Algebraic rearrangement of Eq - фото 761

with the aid of Eqs. (3.1), (3.2), and (3.23). Algebraic rearrangement of Eq. (3.26)– at the expense again of Eq. (3.19), produces

(3.27) which leads directly to 328 due to Eq 322 one finally attains 329 - фото 762

which leads directly to

(3.28) due to Eq 322 one finally attains 329 in view again of Eqs 319and - фото 763

due to Eq. (3.22); one finally attains

(3.29) in view again of Eqs 319and 323 so addition of vectors is associative - фото 764

in view again of Eqs. (3.19)and (3.23)– so addition of vectors is associative.

3.2 Multiplication of Scalar by Vector

Another common operation is multiplication of vector uby scalar α ; this produces a new vector αu , collinear with ubut with opposite direction if α < 0 – with length given by | α |‖ u‖, as apparent in Fig. 3.1b. Using vector coordinates, one accordingly finds that

(3.30) so the coordinates in each direction of space are expanded or contracted - фото 765

– so the coordinates in each direction of space are expanded (or contracted) proportionally. Based on Eq. (3.30), one may equivalently write

(3.31) due to the commutativity of the product of scalars Eq 331yields 332 - фото 766

due to the commutativity of the product of scalars, Eq. (3.31)yields

(3.32) One therefore concludes that 333 following comparative inspection of Eqs - фото 767

One therefore concludes that

(3.33) following comparative inspection of Eqs 330and 333 so multiplication of - фото 768

following comparative inspection of Eqs. (3.30)and (3.33)– so multiplication of scalar by vector is commutative.

Denoting a second scalar by β , it can be stated that

(3.34) with the aid of Eq 330 a second application of the algorithm conveyed by - фото 769

with the aid of Eq. (3.30); a second application of the algorithm conveyed by Eq. (3.30)unfolds

(3.35) where the associative property of multiplication of scalars supports 336 - фото 770

– where the associative property of multiplication of scalars supports

(3.36) Equation 336may be rewritten as 337 at the expense of Eq 330 which - фото 771

Equation (3.36)may be rewritten as

(3.37) at the expense of Eq 330 which condenses to 338 with the aid of Eq - фото 772

at the expense of Eq. (3.30), which condenses to

(3.38) with the aid of Eq 31 this means that multiplication of scalar by vector - фото 773

with the aid of Eq. (3.1); this means that multiplication of scalar by vector is associative.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x