F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

so cotanh −1 x tends to (positive) infinite when x = 1 is approached – meaning that x = 1 serves as vertical asymptote as well. For the remainder of its domain, this inverse function is monotonically decreasing in either interval] ∞, 1[ or]1,∞[; when x →−∞, one obtains

(2.603) stemming from Eq 2600 and similarly when x ie 2604 because x - фото 733

stemming from Eq. (2.600)– and similarly when x → ∞, i.e.

(2.604) because x 1 x and x 1 x thus indicating that the horizontal axis - фото 734

because x + 1 ≈ x and x − 1 ≈ x , thus indicating that the horizontal axis plays the role of (single) horizontal asymptote when x grows unbounded.

3 Vector Operations

As indicated previously, a vector uis defined as a quantity possessing both a magnitude and a direction; the said magnitude is regularly denoted by ‖ u‖, while information on the direction is often conveyed graphically – or else encompasses angles formed with the axes in some reference system. Two vectors, uand v, are said to be equal when their magnitudes are identical, i.e. ‖ u‖ = ‖ v‖, and also point in the same direction; however, they do not need to have the same origin.

A much more convenient way of handling vectors resorts, however, to their decomposition along the three directions of space in a typical Cartesian R 3domain, according to

(3.1) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 735

and

(3.2) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 736

here j x, j y, and j zdenote unit, orthogonal vectors of a Cartesian system, defined as

(3.3) 34 and 35 while 36 - фото 737

(3.4) and 35 while 36 and - фото 738

and

(3.5) while 36 and 37 define - фото 739

– while

(3.6) and 37 define u and v respectively via their coordinates According to - фото 740

and

(3.7) define u and v respectively via their coordinates According to Pythagoras - фото 741

define u and v , respectively, via their coordinates.

According to Pythagoras’ theorem,

(3.8) and likewise 39 this is a more general form than Eq 2431 yet it - фото 742

and likewise

(3.9) this is a more general form than Eq 2431 yet it relies on application of - фото 743

this is a more general form than Eq. (2.431), yet it relies on application of the aforementioned theorem twice. In fact,

(3.10) abides to Eq 2431 as long as u xand u ydenote the projections of uonto the - фото 744

abides to Eq. (2.431), as long as u xand u ydenote the projections of uonto the x ‐ and y ‐axis, respectively, and u xydenotes the projection of uonto the x 0 y plane; further application of Eq. (2.431)then supports

(3.11) where u zdenotes the projection of uonto the z axis Insertion of Eq - фото 745

where u zdenotes the projection of uonto the z ‐axis. Insertion of Eq. (3.10)transforms Eq. (3.11)to

(3.12) that retrieves Eq 38 after taking square roots of both sides as long as - фото 746

that retrieves Eq. (3.8), after taking square roots of both sides – as long as ∣ u x∣ ≡ ‖ u x‖, ∣ u y∣ ≡ ‖ u y‖, and ∣ u z∣ ≡ ‖ u z‖; a similar reasoning obviously applies to v x, v y, and v zdescribing v. The general rules of trigonometry indicate, in turn, that angle θ u(or θ v) – formed with the y ‐axis by the projection of u(or v) onto the y 0 z plane, is such that

(3.13) and likewise 314 similar expressions can be laid out pertaining to angle ϕ - фото 747

and likewise

(3.14) similar expressions can be laid out pertaining to angle ϕ uor ϕ v formed with - фото 748

similar expressions can be laid out pertaining to angle ϕ u(or ϕ v) formed with the z ‐axis by the projection of u(or v) onto the x 0 z plane, viz.

(3.15) and similarly 316 Therefore equality of uand vrequires that u v - фото 749

and similarly

(3.16) Therefore equality of uand vrequires that u v describing the same - фото 750

Therefore, equality of uand vrequires that ‖ u‖ = ‖ v‖ describing the same length, and θ u = θ vand ϕ u = ϕ vdescribing the same orientation – thus using up all three spatial degrees of freedom; upon inspection of the functional forms of Eqs. (3.8), (3.9), and (3.13)– (3.16), one concludes that the said three equalities unequivocally enforce u x = v x, u y = v y, and u z = v z.

3.1 Addition of Vectors

The simpler operation involving vectors is addition; to be applied to uand v, the point of origin of vmust be made coincident with the point of termination of u. The vector sum, u + v , is thus the vector with the same point of origin of uand the same point of termination of v, as apparent in Fig. 3.1a. Therefore, one finds in general

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x