F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.97) after recalling Eq 319 algebraic manipulation transforms Eq 397to - фото 834

after recalling Eq. (3.19); algebraic manipulation transforms Eq. (3.97)to

(3.98) in view of the commutative and associative properties of addition of scalars - фото 835

in view of the commutative and associative properties of addition of scalars; Eq. (3.95)may again be invoked to retrieve Eq. (3.70)with the aid of Eqs. (3.1)and (3.2), since u x v x + u y v y + u z v z = u · v and u x w x + u y w y + u z w z = u · w – and a similar reasoning would likewise generate Eq. (3.74).

Equation (3.95)also leads to a number of other useful relationships; one of the most famous starts from vector w, defined as

(3.99) картинка 836

according to Fig. 3.3d, after having obtained −v as symmetrical of vector vas in Fig. 3.3b; and added to uas in Fig. 3.3c – while uand vremain consistent with Fig. 3.3a. According to Eq. (3.99), the scalar product of wby itself reads

(3.100) whereas combination with Eq 355leads to 3101 after taking square roots - фото 837

whereas combination with Eq. (3.55)leads to

(3.101) after taking square roots of both sides Eq 3101becomes 3102 where Eq - фото 838

after taking square roots of both sides, Eq. (3.101)becomes

(3.102) where Eq 399was again invoked so the length of a difference of vectors - фото 839

where Eq. (3.99)was again invoked – so the length of a difference of vectors equals the square root of its scalar product by itself. In view of Eq. (3.70), one may rewrite Eq. (3.101)as

(3.103) and a second application of the said distributive property conveys 3104 - фото 840

and a second application of the said distributive property conveys

(3.104) insertion of Eq 355supports transformation to 3105 whereas application - фото 841

insertion of Eq. (3.55)supports transformation to

(3.105) whereas application of Eq 358further justifies 3106 also at the - фото 842

whereas application of Eq. (3.58)further justifies

(3.106) also at the expense of the associative property of scalars On the other - фото 843

– also at the expense of the associative property of scalars. On the other hand, the definition of scalar product as per Eq. (3.53)permits reformulation of Eq. (3.106)to

(3.107) thus retrieving Eq 2443 as long as a u b v γ uv and c - фото 844

thus retrieving Eq. (2.443)– as long as a ≡ ‖ u‖, b ≡ ‖ v‖, γ ≡ ∠ u,v, and c ≡ ‖ w‖. Equation (3.107)applies to the sides of the triangle in Fig. 3.3e, obtained, in turn, from that in Fig. 3.3d following counterclockwise rotation, so as to make ulie on the horizontal axis – followed by vertical and horizontal flipping (for graphical convenience). Remember that when uand vare normal to each other, the cosine of the angle between them is nil – so Eq. (3.107)would reduce to

(3.108) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 845

under such circumstances; this is but Pythagoras’ theorem as per Eq. (2.431), with wplaying the role of hypotenuse, and uand vplaying the roles of sides of the right angle. This is illustrated in Fig. 3.3f in terms of sides uand v, with hypotenuse wgenerated in Fig. 3.3g as vector connecting the extreme points of uand v. The said theorem was proven previously based on Newton’s expansion of a difference, see Eqs. (2.432)and (2.433); it is possible to resort to a similar expansion of its conjugate, as illustrated in Fig. 3.3h. Two squares are accordingly considered therein – one with side a + b , and a smaller one with side c that is rotated as much as necessary to have its four corners simultaneously touch the sides of the original square; this originates four right triangles, all with hypotenuse c , and sides a and b . The area of the larger square is ( a + b ) 2, which may in turn be subdivided into the area of the smaller square, c 2, plus the areas of four identical triangles – each one accounting for ab /2, according to

(3.109) expansion of the lefthand side following Newtons binomial coupled with - фото 846

expansion of the left‐hand side following Newton’s binomial, coupled with replacement of 4/2 by 2 in the right‐hand side, yields

(3.110) which readily leads to Eq 2431after dropping of 2 ab between sides - фото 847

which readily leads to Eq. (2.431)after dropping of 2 ab between sides.

Figure 33 Graphical representation of a vectors u and v b u and - фото 848

Figure 3.3 Graphical representation of (a) vectors u and v , (b) u and symmetrical of v , denoted as vector −v , (c, d) sum of u and – v , denoted as (d) vector w, (d,e,g) with lengths ‖ u‖, ‖ v‖, and ‖ w‖, respectively, and (e) following rotation, and horizontal and vertical flipping of u, −v , and w; of (f) normal vectors uand vand (g) triangle with sides defined by uand v, and hypotenuse defined by w; and of (h) concentric squares, the larger with side a + b and the smaller with side c after rotation so as to touch the former at four points – with concomitant definition of lengths a and b .

3.4 Vector Multiplication of Vectors

The vector (or outer) product of two vectors is a third vector – denoted as u× v, and abiding to

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x