F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where the distributive property of scalars allows transformation to

(3.149) algebraic rearrangement at the expense of the commutative and associative - фото 888

algebraic rearrangement at the expense of the commutative and associative properties of multiplication of scalars leads then to

(3.150) so Eqs 322and 351may be invoked to write 3151 that retrieves Eq - фото 889

so Eqs. (3.22)and (3.51)may be invoked to write

(3.151) that retrieves Eq 3128after applying Eq 3143twice thus confirming - фото 890

that retrieves Eq. (3.128)after applying Eq. (3.143)twice – thus confirming validity of Eq. (3.128), through an independent derivation path.

Finally, it is worth mentioning that the volume, V , of a parallelepiped defined by vectors u, v, and wcan be calculated as the area of the parallelogram that constitutes its base, defined by uand vand represented by vector (‖ u‖‖ v‖ sin {∠ u, v}) nas per Eq. (3.112)and (3.113), multiplied by its height – i.e. the projection of wupon n, and calculated as ‖ w‖ cos {∠ w, n} as per Eq. (3.54). On the one hand, (‖ u‖‖ v‖ sin {∠ u, v}) nis, by definition, equal to u× vas per Eq. (3.111)– so ‖ u‖‖ v‖ sin {∠ u, v} coincides with ‖ u× v‖ because ‖ n‖ = 1; on the other hand, the length of the projection of wonto nreads ‖ w‖ cos {∠ w, n}, where cos{∠ w, n} = cos {∠ w, u× v} since u× vhas the direction of n. The product of ‖ u× v‖ by ‖ w‖ cos {∠ w, u× v} is but the scalar product of u× vby was per Eq. (3.54)– so one finally concludes that

(3.152) with a scalar quantity being now at stake 4 Matrix Operations Matrix is a - фото 891

with a scalar quantity being now at stake.

4 Matrix Operations

Matrix is a nuclear concept in linear algebra; arrays of (real) numbers possess a long history associated to solution of linear equations – and records indicate that Italian mathematician Girolamo Cardano first brought a related method from China to Europe in 1545, using his book Ars Magna as vehicle. The first explicit mention to a matrix appeared in 1851 by the hands of James J. Sylvester, an English mathematician – although in the context of determinants. Since he was interested in the determinant formed from a rectangular array of numbers and not in the array itself, he coined the word matrix from the Latin mater meaning womb (i.e. the place from which something else originates); it remained up to his collaborator Arthur Cayley to ascribe the modern sense to the concept of matrix.

Being an array of numbers, arranged as m rows × n columns, and enclosed by a set of square parenthesis, [ ai,j ] with i =1,2,…, m and j =1,2,…, n , a real matrix actually originates from R m×n. It is termed rectangular when mn , and square when m = n ; and reduces to a row vector when m = 1, or a column vector when n = 1. The main diagonal is formed by elements of the type a i,i; if all entries below the main diagonal are zero, the matrix is said to be upper triangular and lower triangular when all entries above the main diagonal are nil. A diagonal matrix is both upper and lower triangular, i.e. all elements off the main diagonal are zero; if all elements in the diagonal are, in turn, equal to each other, then a scalar matrix arises. The most important scalar matrices are square ( m × m ) identity matrices, containing only 1’s in the main diagonal, and denoted as I m. A nil matrix is formed only by zeros, and is usually denoted as 0 m×n.

When elements symmetrically placed relative to the diagonal are the same, the matrix is termed symmetric; all diagonal matrices are obviously symmetric. The sum of the elements in the main diagonal of matrix Ais denoted as trace, abbreviated to tr A . When rows and columns of matrix Awith generic element a i,jare exchanged – with elements retaining their relative location within each row and each column, its transpose A Tresults; it is accordingly described by [ a j,i]. Finally, the requirement for equality of two matrices is their sharing the same type (i.e. identical number of rows and identical number of columns) and the same spread (i.e. identical numbers in homologous positions).

4.1 Addition of Matrices

Consider a generic ( m × n ) matrix A, defined as

(4.1) or via its generic element and thus in a more condensed form 42 where - фото 892

– or via its generic element (and thus in a more condensed form)

(4.2) where subscript irefers to i th row and subscript jrefers to j th column if - фото 893

where subscript irefers to i th row and subscript jrefers to j th column; if another matrix, B, also of type ( m × n ), is defined as

(4.3) then Aand Bcan be added according to the algorithm 44 so the sum will - фото 894

then Aand Bcan be added according to the algorithm

(4.4) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 895

– so the sum will again be a matrix of ( m × n ) type.

Addition of matrices is commutative; in fact,

(4.5) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 896

may be handled as

(4.6) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 897

in view of Eq. (4.4)– where the commutative property of addition of scalars was taken advantage of; after using Eq. (4.5)backward, one gets

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x