F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Equation (4.20)may now be invoked to write

(4.32) complemented with the distributive property of multiplication of scalars - фото 923

complemented with the distributive property of multiplication of scalars – where application of Eqs. (4.4)and (4.20)leads to

(4.33) or once Eqs 43and 49are taken into account 434 Therefore - фото 924

or, once Eqs. (4.3)and (4.9)are taken into account,

(4.34) Therefore multiplication of scalar by matrix is distributive with regard to - фото 925

Therefore, multiplication of scalar by matrix is distributive, with regard to addition of matrices.

One may conceive a similar property encompassing addition of scalars, i.e.

(4.35) as per Eq 49 which becomes 436 owing to Eq 420 coupled with the - фото 926

as per Eq. (4.9)– which becomes

(4.36) owing to Eq 420 coupled with the distributive property of multiplication - фото 927

owing to Eq. (4.20), coupled with the distributive property of multiplication of plain scalars. Reverse application of Eq. (4.4)leads to

(4.37) and an extra utilization of Eq 420entails 438 or else 439 - фото 928

and an extra utilization of Eq. (4.20)entails

(4.38) or else 439 at the expense of Eq 49 Based on Eq 439 one - фото 929

– or else

(4.39) at the expense of Eq 49 Based on Eq 439 one realizes that - фото 930

at the expense of Eq. (4.9). Based on Eq. (4.39), one realizes that multiplication of scalar by matrix is distributive also with regard to addition of scalars.

A final property pertains to product of (scalar) unity by a matrix, according to

(4.40) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 931

based on Eq. (4.2); application of Eq. (4.20)permits, in turn, transformation to

(4.41) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 932

Since 1 is the neutral element of multiplication of scalars, Eq. (4.41)can be redone as

(4.42) that is equivalent to 443 in view again of Eq 42 thus leaving the - фото 933

that is equivalent to

(4.43) in view again of Eq 42 thus leaving the matrix unchanged whatever it is - фото 934

in view again of Eq. (4.2)– thus leaving the matrix unchanged, whatever it is; 1 is accordingly confirmed as the neutral element of multiplication of scalar by matrix.

When the scalar at stake is 1, its product by matrix Atransforms every element thereof to its negative; the result, usually denoted as −A , looks like

(4.44) as per Eqs 42and 420 Matrix A is called symmetric of A because - фото 935

as per Eqs. (4.2)and (4.20). Matrix −A is called symmetric of A– because addition of those two matrices produces a nil matrix, i.e.

(4.45) at the expense of Eqs 42 44 and 444 43 Multiplication of - фото 936

at the expense of Eqs. (4.2), (4.4), and (4.44).

4.3 Multiplication of Matrices

If ( m × n ) matrix A, or [ a i,j] as per Eq. (4.2), and ( n × p ) matrix B, defined as

(4.46) are considered with number of columns of Aequal to number of rows of B then - фото 937

are considered – with number of columns of Aequal to number of rows of B, then the said matrices can be multiplied via

(4.47) the product is an m p matrix with generic element d il Note that - фото 938

the product is an ( m × p ) matrix, with generic element d i,l.

Note that multiplication in reverse order will not be possible unless p = m , due to the matching between number of columns of Band number of rows of Athat would then be required; this example suffices to prove that multiplication of matrices is not commutative. However, even in the case of ( n × n ) matrices Aand Bthat can be multiplied in either order, one gets

(4.48) en lieu of Eq 447 as well as 449 with generic element e kj written - фото 939

en lieu of Eq. (4.47), as well as

(4.49) with generic element e kj written with the aid of the commutative property of - фото 940

with generic element e k,j– written with the aid of the commutative property of multiplication of scalars. The equality of d i,lto e j,kcannot be guaranteed, because the elements chosen for the partial two‐factor products are not the same; for instance, the element positioned in the first row and column of ABlooks like whereas the corresponding element of BAreads which is obviously distinct - фото 941, whereas the corresponding element of BAreads which is obviously distinct from the former despite coincidence of only - фото 942– which is obviously distinct from the former, despite coincidence of (only) the first term.

Consider now three matrices A, B, and C, of the ( m × n ), ( n × p ), and ( p × q ) types, respectively – so product ABis an ( m × p ) rectangular matrix, whereas product of ( m × p ) ABby ( p × q ) Cwill be an ( m × q ) matrix, ABC. Recalling Eqs. (4.2)and (4.46), and complementing them with

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x