F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.7) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 898

from Eq. (4.6), and finally

(4.8) as per Eqs 42and 43 thus confirming the initial statement If a third - фото 899

as per Eqs. (4.2)and (4.3)– thus confirming the initial statement.

If a third matrix Cis defined as

(4.9) then one can write 410 together with Eqs 42and 43 based on Eq - фото 900

then one can write

(4.10) together with Eqs 42and 43 based on Eq 44 one has that 411 - фото 901

together with Eqs. (4.2)and (4.3); based on Eq. (4.4), one has that

(4.11) and a further utilization of Eq 44leads to 412 along with the - фото 902

and a further utilization of Eq. (4.4)leads to

(4.12) along with the associative property borne by addition of scalars One may - фото 903

– along with the associative property borne by addition of scalars. One may repeat the above reasoning by first associating Aand B, viz.

(4.13) at the expense of Eqs 42 43 and 49 with Eq 44allowing - фото 904

at the expense of Eqs. (4.2), (4.3), and (4.9), with Eq. (4.4)allowing transformation to

(4.14) supplementary use of Eq 44unfolds 415 with the aid of the associative - фото 905

supplementary use of Eq. (4.4)unfolds

(4.15) with the aid of the associative property of addition of scalars while - фото 906

with the aid of the associative property of addition of scalars, while elimination of the right‐hand side between Eqs. (4.12)and (4.15)gives rise to

(4.16) meaning that addition of matrices is associative For every m n matrix - фото 907

– meaning that addition of matrices is associative.

For every ( m × n ) matrix A, there is a null matrix 0 m×nsuch that

(4.17) in agreement with Eq 42 where Eq 44prompts transformation to 418 - фото 908

in agreement with Eq. (4.2), where Eq. (4.4)prompts transformation to

(4.18) in view of 0 being the neutral element for addition of scalars Eq - фото 909

in view of 0 being the neutral element for addition of scalars; Eq. (4.18)finally gives rise to

(4.19) again at the expense of Eq 42 Therefore 0 mnplays the role of neutral - фото 910

again at the expense of Eq. (4.2). Therefore, 0 m×nplays the role of neutral element with regard to addition of matrices, i.e. it leaves the other ( m × n ) matrix (to which it is added) unchanged.

4.2 Multiplication of Scalar by Matrix

Given a generic scalar, say, α , another operation can be defined encompassing matrix Bof any type, viz.

(4.20) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 911

with the aid of Eq. (4.3); this is termed multiplication of scalar by matrix. In view of Eqs. (4.3)and (4.20), one has that

(4.21) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 912

which may be rewritten as

(4.22) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 913

due to the commutativity of addition of scalars – or, upon use of Eq. (4.20)backward,

(4.23) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 914

Eq. (4.3)may again be recalled to write

(4.24) known as commutative property of multiplication of scalar by matrix even - фото 915

known as commutative property of multiplication of scalar by matrix – even though the scalar is normally placed up front relative to the matrix, for a matter of convention.

If a second scalar is invoked, say, β , then Eq. (4.9)supports

(4.25) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 916

where application of Eq. (4.20)unfolds

(4.26) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 917

a second application of Eq. (4.20)yields

(4.27) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 918

together with the associative property of multiplication of scalars. Final backward application of Eq. (4.20)gives rise to

(4.28) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 919

or, equivalently,

(4.29) due to Eq 49 one usually refers to Eq 429as associative property If - фото 920

due to Eq. (4.9); one usually refers to Eq. (4.29)as associative property.

If addition of matrices and multiplication of scalar by matrix are considered simultaneously, then one gets

(4.30) as per Eqs 43and 49 with Eq 44supporting transformation to 431 - фото 921

as per Eqs. (4.3)and (4.9), with Eq. (4.4)supporting transformation to

(4.31) Equation 420may now be invoked to write 432 complemented with the - фото 922

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x