F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.50) one gets 451 where application of the algorithm conveyed by Eq - фото 943

one gets

(4.51) where application of the algorithm conveyed by Eq 447leads to 452 A - фото 944

– where application of the algorithm conveyed by Eq. (4.47)leads to

(4.52) A second application of the said algorithm to Eq 452gives rise to 453 - фото 945

A second application of the said algorithm to Eq. (4.52)gives rise to

(4.53) which may be algebraically rearranged as 454 as per the distributive - фото 946

which may be algebraically rearranged as

(4.54) as per the distributive property of multiplication of plain scalars where - фото 947

as per the distributive property of multiplication of plain scalars – where exchange of summations is possible, as no constraint is imposed upon their limits (i.e. n is independent of p ) besides commutativity of addition of scalars; further manipulation yields

(4.55) at the expense of the algorithm conveyed by Eq 447applied twice reversewise - фото 948

at the expense of the algorithm conveyed by Eq. (4.47)applied twice reversewise – thus prompting the conclusion

(4.56) based on Eqs 42 446 and 450 Therefore multiplication of matrices - фото 949

based on Eqs. (4.2), (4.46), and (4.50). Therefore, multiplication of matrices is associative, provided that the relative order of multiplication of the original factors is kept; Eq. (4.56)is often coined as

(4.57) in view of the common intermediate form in Eq 454 If m n matrix - фото 950

in view of the common (intermediate) form in Eq 454 If m n matrix Ais multiplied by the n n identity - фото 951in Eq. (4.54).

If ( m × n ) matrix Ais multiplied by the ( n × n ) identity matrix, I n, then Eq. (4.47)can be revisited as

(4.58) where the identity matrix is defined as 459 with a main diagonal of 1s - фото 952

where the identity matrix is defined as

(4.59) with a main diagonal of 1s and 0s elsewhere since the summations are both - фото 953

– with a main diagonal of 1's, and 0's elsewhere; since the summations are both nil for carrying a nil factor, Eq. (4.58)breaks down to

(4.60) so Eq 42will finally support 461 since 1 r n In other words - фото 954

– so Eq. (4.2)will finally support

(4.61) since 1 r n In other words multiplication of a matrix by the - фото 955

since 1 ≤ r ≤ n . In other words, multiplication of a matrix by the (compatible) identity matrix leaves the former unchanged – so I nplays the role of neutral element for the multiplication of matrices. This very same conclusion can be attained if the order of multiplication is reversed, i.e.

(4.62) as per Eq 447 provided that the matrices are still compatible with regard - фото 956

as per Eq. (4.47), provided that the matrices are still compatible with regard to multiplication – so I nhas been swapped with I m; since the right‐hand side reduces to its middle term, Eq. (4.62)simplifies again to

(4.63) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 957

or else

(4.64) in view of Eq 42 ie the order of multiplication of the identity matrix - фото 958

in view of Eq. (4.2)– i.e. the order of multiplication of the identity matrix by another matrix (when feasible) does not affect the final result.

When an ( m × n ) matrix Ais postmultiplied by a (compatible) null ( n × p ) matrix, 0 n×p, one gets

(4.65) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 959

as per Eq. (4.2)– where Eq. (4.47)can be employed to get

(4.66) together with the trivial rules of multiplication of a plain scalar by zero and - фото 960

together with the trivial rules of multiplication of a plain scalar by zero and summation of any number of resulting zeros; Eq. (4.66)is thus equivalent to

(4.67) meaning that postmultiplication by the null matrix always degenerates to a null - фото 961

meaning that postmultiplication by the null matrix always degenerates to a null matrix (with the same number of columns). By the same token, premultiplication of Aby the (compatible) null ( p × m ) matrix 0 p×m, i.e.

(4.68) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 962

on the basis of Eq. (4.2), gives rise to

(4.69) by virtue of Eq 447 complemented by the nil product of zero by any scalar - фото 963

by virtue of Eq. (4.47)– complemented by the nil product of zero by any scalar and the nil sum of resulting zeros; Eq. (4.69)is an alias of

(4.70) meaning that premultiplication by a null matrix leads necessarily to the - фото 964

meaning that premultiplication by a null matrix leads necessarily to the corresponding null matrix as product – where the latter has number of columns not necessarily coincident with that of the factor null matrix.

A final property of interest pertains to simultaneous performance of addition and multiplication of matrices, viz.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x