F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.104) in more condensed form Eq 4104reads 4105 so A Twill be an n m - фото 998

in more condensed form, Eq. (4.104)reads

(4.105) so A Twill be an n m matrix The order of a square matrix is obviously - фото 999

so A Twill be an ( n × m ) matrix. The order of a square matrix is obviously not changed upon transposal – neither do the diagonal elements (characterized by i = j ), irrespective of its order; hence, one finds that

(4.106) for a square A Furthermore if the elements symmetrically located with regard - фото 1000

for a square A. Furthermore, if the elements symmetrically located with regard to the main diagonal are identical, then

(4.107) a matrix bearing this property is termed symmetric a concept distinct from - фото 1001

a matrix bearing this property is termed symmetric – a concept distinct from that conveyed by Eq. (4.44)that involves two matrices. A particular case of the above statement is the identity matrix – since a i,j≠i = 0 = a j,i; hence,

(4.108) Application of Eq 4105twice sequentially supports 4109 which may be - фото 1002

Application of Eq. (4.105)twice sequentially supports

(4.109) which may be condensed to 4110 therefore the inverse of transposal - фото 1003

which may be condensed to

(4.110) therefore the inverse of transposal coincides with transposal itself as - фото 1004

therefore, the inverse of transposal coincides with transposal itself, as composition of the two leaves the original matrix unchanged.

When transposal is combined with addition of matrices, one obtains

(4.111) from Eqs 42and 43 after direct combination with Eq 4105 whereas - фото 1005

from Eqs. (4.2)and (4.3), after direct combination with Eq. (4.105); whereas the algorithm conveyed by Eq. (4.4)gives rise to

(4.112) A further application of Eq 4105transforms Eq 4112to 4113 which is - фото 1006

A further application of Eq. (4.105)transforms Eq. (4.112)to

(4.113) which is equivalent to 4114 given by Eqs 42 44 if more than two - фото 1007

which is equivalent to

(4.114) given by Eqs 42 44 if more than two matrices are at stake this very - фото 1008

given by Eqs. (4.2)– (4.4); if more than two matrices are at stake, this very same rule can be iteratively applied.

In the case of product of matrices, one should write

(4.115) based on Eqs 42 446 and 447 upon application of Eq 4105 one - фото 1009

based on Eqs. (4.2), (4.46), and (4.47); upon application of Eq. (4.105), one gets

(4.116) so the row index ie i and the column index ie l should be exchanged - фото 1010

so the row index (i.e. i ) and the column index (i.e. l ) should be exchanged to give

(4.117) where commutativity of the multiplication of scalars was meanwhile taken - фото 1011

– where commutativity of the multiplication of scalars was meanwhile taken advantage of. A further utilization of Eq. (4.105)converts Eq. (4.117)to

(4.118) so the definition of multiplication as per Eq 447may be applied backward to - фото 1012

so the definition of multiplication as per Eq. (4.47)may be applied backward to write

(4.119) a shorter version of Eq 4119reads 4120 stemming from Eqs 42and - фото 1013

a shorter version of Eq. (4.119)reads

(4.120) stemming from Eqs 42and 446 Hence the transpose of a product of - фото 1014

stemming from Eqs. (4.2)and (4.46). Hence, the transpose of a product of matrices equals the product of transposes of the factor matrices, effected in reverse order. As expected, this property can be likewise applied to any number of factor matrices.

If matrix Ais a scalar matrix, say α In , then Eq. (4.120)still applies, viz.

(4.121) since there are no significant offdiagonal elements the matrix at stake is - фото 1015

since there are no significant off‐diagonal elements, the matrix at stake is intrinsically symmetric as per Eq. (4.107)– so one may write

(4.122) along with Eq 464 The order of placement of factors in the righthand side - фото 1016

along with Eq. (4.64). The order of placement of factors in the right‐hand side of Eq. (4.122)is, in turn, arbitrary as per Eq. (4.24)– so one ends up with

(4.123) this is the conventional form of expressing the result of transposing the - фото 1017

this is the conventional form of expressing the result of transposing the product of a scalar by a matrix, which degenerates to the product of the said scalar by the transpose matrix.

4.5 Inversion of Matrices

When addressing algebraic operations involving matrices, analogues as close as possible to the algebraic operations applying to plain scalars have been systematically sought so far; this was possible with addition of matrices, as well as subtraction of matrices, seen as addition to the symmetric as per Eq. (4.44)– where elements in corresponding positions of the two matrices undergo a one‐by‐one transformation. In the case of multiplication of matrices, the elements of each row of the first one are multiplied by the elements of each column of the second matrix, in corresponding positions; hence, a row‐by‐column product is at stake, more complex than the one-by-one approach in addition of matrices.

Division of matrices poses an unsurmountable problem, though; first of all, the said hypothetical algebraic operation would be possible only when a square matrix played the role of divisor and its rank further coincided with its order (i.e. maximum number of linearly independent rows, or columns for that matter) – unlike happens with a plain scalar, where its being different from zero would suffice for divisor. Unfortunately, the approach here must be of a matrix‐by‐matrix nature – so a new matrix, called the inverse, is to be first calculated and then multiplied by the dividend. Remember that a / b (with a and b denoting plain scalars) may also be seen as a × b −1– with the latter factor referring to the algebraic inverse, or reciprocal, 1/ b ; and that a × a −1is merely unity, so it is reasonable to expect that the product of a matrix by its inverse equals the matrix equivalent of unity, or identity matrix. The general strategy to calculate the inverse matrix will be developed below – with further algorithms to be discussed at a later stage, as well as the major features associated with matrix inversion.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x