F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4.5.1 Full Matrix

The inverse ( n × n ) matrix A −1, of a given ( n × n ) matrix A, satisfies, by definition,

(4.124) therefore if A 1is described by 4125 then one may insert Eq 4125and - фото 1018

therefore, if A −1is described by

(4.125) then one may insert Eq 4125and Eq 41with m n to transform Eq - фото 1019

then one may insert Eq. (4.125)and Eq. (4.1)with m = n to transform Eq. (4.124)to

(4.126) corresponding to AA 1being equal to I n Recalling the algorithm of - фото 1020

– corresponding to AA −1being equal to I n. Recalling the algorithm of multiplication of matrices as per Eq. (4.47), one finds that Eq. (4.126)is equivalent to

(4.127) hence a system of n 2linear algebraic equations in n 2unknowns ie α 11 α - фото 1021

hence, a system of n 2linear algebraic equations in n 2unknowns, i.e. α 1,1, α 1,2, …, α 1,n, α 2,1, α 2,2, …, α 2,n, …, α n,1, α n,2, …, α n,n, arises – the solution of which will be postponed at this point.

If one labels

(4.128) картинка 1022

then Eq. (4.124)will read

(4.129) картинка 1023

in terms of left‐ and right‐hand sides; this is equivalent to Eq. (4.127), as seen above. Assume now that another matrix Cexists, such that

(4.130) картинка 1024

thus mimicking the intermediate and right‐hand sides of Eq. (4.124); in view of Eq. (4.64), one has it that

(4.131) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1025

where insertion of Eq. (4.130)unfolds

(4.132) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1026

After applying the associative property as conveyed by Eq. (4.57), one gets

(4.133) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1027

where combination with Eq. (4.129)gives rise to

(4.134) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1028

and finally to

(4.135) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1029

on account of Eqs. (4.61)and (4.128). In other words, the only matrix Cthat satisfies Eq. (4.130)is indeed A −1, to be calculated via Eq. (4.127), so the second equality in Eq. (4.124)is fully proven once the first equality is true; this result is also consistent with the need that the number of columns of Amatches the number of rows of A −1(thus guaranteeing existence of AA −1) and vice versa (so as to assure existence of A −1 A) – which obviously implies that Aand A −1are square matrices of similar order.

In view of the definition of inverse, one realizes that

(4.136) based on Eq 4124after replacing Aby A 1 so ordered subtraction of Eq - фото 1030

based on Eq. (4.124)after replacing Aby A −1– so ordered subtraction of Eq. (4.136)from Eq. (4.124)gives rise to

(4.137) once the left and middlehand sides of the former have been previously - фото 1031

once the left‐ and middle‐hand sides of the former have been previously swapped; postmultiplication of the first equality in Eq. (4.137)by Aproduces

(4.138) where Eqs 470and 476permit conversion to 4139 The second equality - фото 1032

where Eqs. (4.70)and (4.76)permit conversion to

(4.139) The second equality in Eq 4124then supports transformation of Eq 4139to - фото 1033

The second equality in Eq. (4.124)then supports transformation of Eq. (4.139)to

(4.140) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1034

after having applied the associative property as per Eq. (4.57)– whereas Eq. (4.61)accounts for simplification to

(4.141) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1035

one thus concludes that

(4.142) after adding A 1 1to both sides and recalling Eqs 419and 445 - фото 1036

after adding ( A −1) −1to both sides, and recalling Eqs. (4.19)and (4.45). Therefore, composition of the inversion operation with itself cancels it out – in much the same way already found for transposal. A similar reasoning can be developed involving premultiplication of the second equality of Eq. (4.137)by A, viz.

(4.143) where the distributive property as per Eq 482and the associative property - фото 1037

where the distributive property as per Eq. (4.82)and the associative property as per Eq. (4.57), coupled with Eq. (4.67)yield

(4.144) the definition of inverse labeled as Eq 4124may again be invoked to write - фото 1038

the definition of inverse labeled as Eq. (4.124)may again be invoked to write

(4.145) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1039

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x