F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

or else

(4.146) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1040

in view of Eq. (4.64)– which retrieves Eq. (4.141), and consequently leads also to Eq. (4.142).

On the other hand, one finds that

(4.147) ie the inverse of a product of matrices is given by the product of their - фото 1041

i.e. the inverse of a product of matrices is given by the product of their inverses, in reverse order; to prove so, one should realize that

(4.148) can be obtained after postmultiplying ABby B 1 A 1 followed by application - фото 1042

can be obtained after postmultiplying ABby B −1 A −1, followed by application of Eq. (4.56)– where both Aand Bare ( n × n ) matrices. In view of Eq. (4.124), one may replace Eq. (4.148)by

(4.149) where Eqs 457 461 and 4124allow further simplification to 4150 - фото 1043

where Eqs. (4.57), (4.61), and (4.124)allow further simplification to

(4.150) one may similarly show that 4151 involving premultiplication of ABby B 1 - фото 1044

one may similarly show that

(4.151) involving premultiplication of ABby B 1 A 1 again on the basis of the - фото 1045

involving premultiplication of ABby B −1 A −1– again on the basis of the associative property of multiplication of matrices as per Eq. (4.56), which degenerates to

(4.152) due again to Eq 4124 In view of the features of I nas neutral element as - фото 1046

due again to Eq. (4.124). In view of the features of I nas neutral element as conveyed by Eq. (4.64), one may redo Eq. (4.152)to

(4.153) again with the aid of Eq 4124 the set of Eqs 4150and - фото 1047

– again with the aid of Eq. (4.124); the set of Eqs. (4.150)and (4.153)guarantees full validity of Eq. (4.147), in view of the definition of inverse labeled as Eq. (4.124).

The result conveyed by Eq. (4.147)can obviously be extended to any number of factors – by sequentially applying it pairwise, i.e. the inverse of a product of matrices is but the product of their inverses, again in reverse order. When the matrices of interest are identical, this rule leads to

(4.154) where the righthand side may be rewritten as 4155 owing to the definition - фото 1048

where the right‐hand side may be rewritten as

(4.155) owing to the definition of power hence the power and inverse signs are - фото 1049

owing to the definition of power; hence, the power and inverse signs are interchangeable.

In the particular case of matrix Adegenerating to scalar matrix α In , Eq. (4.147)prompts

(4.156) the inverse of a scalar matrix α I nis given by merely α 1 I n since I nis - фото 1050

the inverse of a scalar matrix α I nis given by merely α −1 I n, since I nis the neutral element of multiplication, so Eq. (4.156)is equivalent to

(4.157) also with the aid of Eq 424 where Eq 461supports final transformation - фото 1051

also with the aid of Eq. (4.24)– where Eq. (4.61)supports final transformation to

(4.158) Equation 4158consequently indicates that the inverse of the product of a - фото 1052

Equation (4.158)consequently indicates that the inverse of the product of a scalar by a matrix is simply the product of the reciprocal of the said scalar by the inverse of the matrix proper.

One may finally investigate what the combination of the transpose and inverse operators will look like, by first setting the product A T× ( A −1) Tand then realizing that

(4.159) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1053

based on Eq. (4.120); however, Eq. (4.124)has it that

(4.160) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1054

where Eq. (4.108)allows further simplification to

(4.161) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1055

One may similarly write

(4.162) at the expense again of the rule of transposition of a product of matrices see - фото 1056

at the expense again of the rule of transposition of a product of matrices, see Eq. (4.120); the definition of inverse as conveyed by Eq. (4.124)permits simplification of Eq. (4.162)to

(4.163) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1057

whereas Eq. (4.108)may again be invoked to attain

(4.164) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 1058

Inspection of Eqs. (4.161)and (4.164)confirms compatibility with the form of Eq. (4.124), so one concludes that

(4.165) meaning that the inverse of A Tis merely the transpose of A 1 therefore - фото 1059

– meaning that the inverse of A Tis merely the transpose of A −1; therefore, the transpose and inverse operators can also be exchanged without affecting the final result.

Although being square is a necessary condition for invertibility of a matrix, it is far from being also a sufficient condition; in fact, the rank of ( n × n ) matrix Amust coincide with its order, so as to guarantee existence of A −1(to be discussed later). Under such conditions, the said square matrix is termed regular – otherwise it is termed singular; as will be seen, the associated determinant is a convenient tool to effect this distinction.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x