F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.144) that degenerates to 2145 after lumping the coefficients of similar powers - фото 208

that degenerates to

(2.145) after lumping the coefficients of similar powers of x and the process may be - фото 209

after lumping the coefficients of similar powers of x – and the process may be iterated for the third term, the fourth term, and so on. The above algorithm is thus to be repeated until the degree of the polynomial in numerator of the last term is lower than its denominator counterpart; it may even reduce to zero – in which case P nwould be an exact (polynomial) multiple of P m.

Figure 27 Graphical algorithm of long Euclidean division of polynomials on x - фото 210

Figure 2.7 Graphical algorithm of (long) Euclidean division of polynomials on x – where …, a n−2, a n−1, a n, …, b m−2, b m−1, and b mdenote real numbers, while n and m denote integer numbers.

In the particular case P mis a linear polynomial, of the form xr , viz.

(2.146) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 211

en lieu of Eq. (2.136)and meaning that b 0 = −r and b 1 = 1, the algorithm of division of polynomials simplifies to

(2.147) which breaks down to 2148 upon condensation of terms alike a second - фото 212

which breaks down to

(2.148) upon condensation of terms alike a second application of said algorithm - фото 213

upon condensation of terms alike; a second application of said algorithm unfolds

(2.149) where a similar condensation of powers alike gives rise to 2150 This - фото 214

where a similar condensation of powers alike gives rise to

(2.150) This process may then be iterated until the numerator of the last term reduces - фото 215

This process may then be iterated until the numerator of the last term reduces to a constant – according to

(2.151) or after having eliminated inner parentheses 2152 a graphical - фото 216

– or, after having eliminated inner parentheses,

(2.152) a graphical illustration often known as Ruffinis rule is depicted in Fig - фото 217

a graphical illustration – often known as Ruffini’s rule, is depicted in Fig. 2.8. Except for the first column – where the lower entry mimics the upper entry, the lower entry of every column entails the product of the previous counterpart by r , added to the current upper entry.

Figure 28 Graphical algorithm of long Ruffinis division of polynomials - фото 218

Figure 2.8 Graphical algorithm of (long) Ruffini’s division of polynomials – where a 0, a 1, a 2, …, a n−2, a n−1, a n, and r denote real numbers, while n denotes an integer number.

A more condensed notation is, however, possible based on Eq. (2.152), viz.

(2.153) by taking advantage of the concept of summation note that the numerator of - фото 219

– by taking advantage of the concept of summation; note that the numerator of the last term coincides with P n{ x }| x = r, see Eq. (2.135). Said remainder will be zero, i.e.

(2.154) when 2155 Eq 2155 may be rephrased as 2156 - фото 220

when

(2.155) Eq 2155 may be rephrased as 2156 or in view of Eq 2135 2157 - фото 221

Eq. (2.155) may be rephrased as

(2.156) or in view of Eq 2135 2157 Therefore the linear polynomial x r - фото 222

or, in view of Eq. (2.135),

(2.157) Therefore the linear polynomial x r divides P n x exactly or P n x - фото 223

Therefore, the linear polynomial xr divides P n{ x } exactly – or P n{ x } is a multiple of xr , when x = r is a root of P n{ x }.

2.2.3 Factorization

An alternative statement of the result conveyed by Eq. (2.154)is

(2.158) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 224

at the expense of Eq. (2.141)– or, in view of Eqs. (2.135)and (2.146),

(2.159) Eq 2159 indicates that x r will be a factor of polynomial P nwhenever r - фото 225

Eq. (2.159) indicates that xr will be a factor of polynomial P nwhenever r is itself a root of P n. This very same conclusion may be achieved after recalling that a function, f { x }, may in general be represented by an infinite series on x , i.e.

(2.160) according to Taylors theorem to be derived in due course where ξ denotes - фото 226

according to Taylor’s theorem (to be derived in due course) – where ξ denotes any point of the interval of definition of f { x }; in the particular case of an n th‐degree polynomial, the said expansion becomes finite and entails only n + 1 terms, according to

(2.161) with the aid of Eq 2135 for the simple reason that d n1 P n dx n1 d - фото 227

with the aid of Eq. (2.135), for the simple reason that d n+1 P n/ dx n+1 = d n+2 P n/ dx n+2 == 0. Under such circumstances, Taylor’s coefficients look like

(2.162) in agreement with Eq 2161 which may be condensed to 2163 where a 1 a - фото 228

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x