F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

if the theorems on limits are blindly applied. To circumvent the unknown quantities of the 0/0 type, one may independently differentiate, with regard to k 2, numerator and denominator of either term in the right‐hand side of Eq. (2.128), according to

(2.129) where minus signs may be dropped from numerator and denominator factored out - фото 191

where minus signs may be dropped from numerator and denominator, factored out and classical theorems on limits considered to reach 2130 - фото 192factored out, and classical theorems on limits considered to reach

(2.130) upon division of both numerator and denominator of the last term by 1 k 2 - фото 193

upon division of both numerator and denominator of the last term by 1 − k 2, one gets

(2.131) or equivalently 2132 once n 1 has been factored out which retrieves - фото 194

or, equivalently,

(2.132) once n 1 has been factored out which retrieves Eq 283pertaining to a - фото 195

once n + 1 has been factored out – which retrieves Eq. (2.83)pertaining to a plain arithmetic series, as expected. This conclusion can also be drawn graphically, by comparing the curves labeled as k 2 = 1 in Fig. 2.6with the lines in Fig. 2.4corresponding to the same Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 196; and goes along with realization that

(2.133) based on Eq 2110and matching Eq 276 22 Multiplication and Division - фото 197

based on Eq. (2.110)and matching Eq. (2.76).

2.2 Multiplication and Division of Polynomials

A polynomial in x refers to a sum of powers of integer exponent on x ; such algebraic functions are accordingly the easiest in terms of calculation – including numerical methods, as they basically involve just multiplications and additions. In principle, any continuous function of practical interest may be expressed via a polynomial (as will be derived later); hence, algebraic operations involving polynomials are of the utmost interest for process engineering. Besides the trivial operation of addition – where terms with identical exponents of x are merely lumped, i.e.

(2.134) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 198

with

(2.135) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 199

and

(2.136) multiplication and division of polynomials appear as germane An iterated - фото 200

multiplication and division of polynomials appear as germane. An iterated version of the former entails the power of a polynomial, whereas the iterated version of the latter supports factorization of a polynomial – i.e. conversion from a sum to a product of simpler (usually linear) polynomials.

2.2.1 Product

Recalling the two polynomials labeled as Eqs. (2.135)and (2.136)– of n th and m th degree, respectively, one may define their product P n P mas an ( n + m )th degree polynomial, viz.

(2.137) upon application of the distributive property of multiplication one obtains - фото 201

upon application of the distributive property of multiplication, one obtains

(2.138) or else 2139 after lumping powers of x and resorting to a more condensed - фото 202

or else

(2.139) after lumping powers of x and resorting to a more condensed notation Of - фото 203

after lumping powers of x and resorting to a more condensed notation. Of particular interest is having n = m = 1, besides b 0 =a 0and a 1 = b 1 = 1 – in which case Eq. (2.139)takes the form

(2.140) Eq 2140entails a notable case of multiplication since the product of two - фото 204

Eq. (2.140)entails a notable case of multiplication – since the product of two conjugated binomials, i.e. x + a 0as per Eq. (2.135)and xa 0as per Eq. (2.136), equals the difference of the squares of their bases, i.e. x 2− a 0 2. This mathematical feature is useful when the terms under scrutiny are square roots (since the product of two irrational functions would turn to a rational function).

2.2.2 Quotient

With regard to division of a dividend polynomial, say, P n{ x }, by a divisor polynomial, say, P m{ x }, one will eventually be led to

(2.141) on account again of Eqs 2135and 2136 provided that n m here Q - фото 205

on account again of Eqs. (2.135)and (2.136)– provided that n ≥ m ; here Q n−mdenotes an ( n – m )th degree quotient polynomial, and R denotes a remainder polynomial of degree not exceeding m . The underlying algorithm is but an extension of Euclidean (long) division algorithm for regular numbers; one should thus start by dividing the highest order term, a n x n, of the dividend polynomial by the highest order term, b m x m, of the divisor polynomial – so a n x n−m/ b malways appears as first term of the quotient polynomial; multiplication should then proceed of said quotient term by every term of the divisor – followed by subtraction of the result from the dividend. In other words, the first step of division should lead to

(2.142) which simplifies to 2143 after lumping factors and canceling a n x nwith - фото 206

which simplifies to

(2.143) after lumping factors and canceling a n x nwith its negative afterward this is - фото 207

after lumping factors and canceling a n x nwith its negative afterward; this is graphically illustrated in Fig. 2.7.The same algorithm may now be applied to the second term in the right‐hand side of Eq. (2.143), as long as n – 1 ≥ m , to produce

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x