F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.72) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 124

and also known as series; if the partial sums S 1, S 2, …, S i, … converge to a finite limit, say, S , according to

(2.73) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 125

then S can be viewed as the infinite series

(2.74) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 126

– while the said series is termed convergent. Should the sequence of partial sums tend to infinite, or oscillate either finitely or infinitely, then the series would be termed divergent.

Despite the great many series that may be devised, two of them possess major practical importance – arithmetic and geometric progressions, as well as their hybrid (i.e. arithmetic–geometric progressions); hence, all three types will be treated below in detail.

2.1.1 Arithmetic Series

Consider a series with n terms, where each term, u i, equals the previous one, u i–1, added to a constant value, k – according to

(2.75) or equivalently 276 is termed a finite arith - фото 127

or, equivalently,

(2.76) is termed a finite arithmetic progression or arithmetic series of increment - фото 128

is termed a finite arithmetic progression or arithmetic series of increment - фото 129is termed a (finite) arithmetic progression, or arithmetic series, of increment k and first term u 0. Equation (2.76)may obviously be reformulated to

(2.77) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 130

using the last term,

(2.78) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 131

instead of the first one, u 0, as reference; upon ordered addition of Eqs. (2.75)and (2.77), one obtains

(2.79) where cancelation of symmetrical terms reduces Eq 279to 280 Upon - фото 132

– where cancelation of symmetrical terms reduces Eq. (2.79)to

(2.80) Upon factoring n 1 out in the righthand side followed by division of both - фото 133

Upon factoring n + 1 out in the right‐hand side, followed by division of both sides by 2, Eq. (2.80)becomes

(2.81) ie it looks as n 1 times the arithmetic average of the first and last - фото 134

– i.e. it looks as n + 1 times the arithmetic average of the first and last terms of the series; insertion of Eq. (2.78)permits transformation to

(2.82) that breaks down to 283 valid irrespective of the actual values of u 0 - фото 135

that breaks down to

(2.83) valid irrespective of the actual values of u 0 k or n Note that an - фото 136

– valid irrespective of the actual values of u 0, k or n .

Note that an arithmetic series is never convergent in the sense put forward by Eqs. (2.72)and (2.73), because the magnitude of each individual term keeps increasing without bound as n → ∞; this becomes apparent after dividing both sides of Eq. (2.83)by u 0and retrieving Eq. (2.72), i.e.

(2.84) which translates to Fig 24 In the particular case of k 0 Eq - фото 137

which translates to Fig. 2.4. In the particular case of k = 0, Eq. (2.83)simplifies to

(2.85) consistent with the definition of multiplication which describes the lowest - фото 138

consistent with the definition of multiplication – which describes the lowest curve in Fig. 2.4, essentially materialized by a straight line with unit slope for relatively large n ; as expected, a large k eventually produces a quadratic growth of S nwith n , in agreement with Eq. (2.84).

Figure 24 Variation of value of n term arithmetic series S n normalized by - фото 139

Figure 2.4 Variation of value of n ‐term arithmetic series, S n, normalized by first term, u 0, as a function of n – for selected values of increment, k , normalized also by u 0.

2.1.2 Geometric Series

A geometric series is said to exist when each term is obtained from the previous one via multiplication by a constant parameter, k , viz.

(2.86) and is said to possess ratio k and first term u 0 after factoring u 0out - фото 140

– and is said to possess ratio k and first term u 0; after factoring u 0out, Eq. (2.86)becomes

(2.87) An alternative form of calculating ensues after first rewriting Eq 287as - фото 141

An alternative form of calculating ensues after first rewriting Eq 287as 288 where the first term of the - фото 142ensues after first rewriting Eq. (2.87)as

(2.88) where the first term of the summation was made apparent multiplication of both - фото 143

where the first term of the summation was made apparent; multiplication of both sides by k unfolds

(2.89) where straightforward algebraic rearrangement leads to 290 Ordered - фото 144

where straightforward algebraic rearrangement leads to

(2.90) Ordered subtraction of Eq 290from Eq 288generates 291 where - фото 145

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x