F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.53) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 104

After taking reciprocals of the left‐ and right‐hand sides, Eq. (2.53)gives rise to

(2.54) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 105

or, after recalling Eq. (2.43),

(2.55) Therefore the harmonic mean of two numbers never exceeds the geometric mean - фото 106

Therefore, the harmonic mean of two numbers never exceeds the geometric mean (again encompassing only positive values), and coincides therewith again when x 1 = x 2.

When n = 2, another mean can be defined as

(2.56) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 107

– known as logarithmic mean; Eq. (2.56)is often rephrased to

(2.57) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 108

after taking advantage of Eq. (2.26). This logarithmic mean lies below the arithmetic and the geometric means, i.e.

(2.58) where Eq 255was meanwhile taken advantage of To prove so it is convenient - фото 109

where Eq. (2.55)was meanwhile taken advantage of. To prove so, it is convenient to insert Eqs. (2.42), (2.43), (2.45), and (2.57)pertaining to x 1and x 2so as to get

(2.59) from Eq 258 where factoring of x 1 x 2 0 as per working hypothesis - фото 110

from Eq. (2.58), where factoring of x 1≥ x 2 > 0 (as per working hypothesis) in all sides gives rise to

(2.60) after dropping x 1 0 from all sides and further multiplying and dividing - фото 111

after dropping x 1 > 0 from all sides, and further multiplying and dividing the last side by x 2/ x 1, Eq. (2.60)turns to

(2.61) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 112

– where z denotes an auxiliary variable satisfying

(2.62) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 113

A graphical account of Eq. (2.60)is provided in Fig. 2.3. Inspection of the curves therein not only unfolds a clear and systematic positioning of the various means relative to each other – in general agreement with (so far, postulated) Eq. (2.58)– but also indicates a collective convergence to x 1as x 2approaches it (as expected).

Figure 23 Variation of arithmetic mean arm logarithmic mean lom - фото 114

Figure 2.3 Variation of arithmetic mean ( arm ), logarithmic mean ( lom ), geometric mean ( gem ), and harmonic mean ( ham ) of positive x 1and x 2< x 1, normalized by x 1, as a function of their ratio, x 2/ x 1.

To provide a quantitative argument in support of the graphical trends above, one may expand the middle left‐ and middle right‐hand sides of Eq. (2.61)via Taylor’s series (see discussion later), around z = 1, according to

(2.63) where 12 in the lefthand side was meanwhile splitted as 1 12 note that - фото 115

where 1/2 in the left‐hand side was meanwhile splitted as 1 − 1/2; note that such series in z are convergent because 0 < z < 1, as per Eq. (2.62). Straightforward simplification of Eq. (2.63)unfolds

(2.64) where z 1 may be further dropped off both numerator and denominator of the - фото 116

where z − 1 may be further dropped off both numerator and denominator of the middle side to give

(2.65) after simplifying notation in Eq 265to 266 with the aid of 267 - фото 117

after simplifying notation in Eq. (2.65)to

(2.66) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 118

with the aid of

(2.67) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 119

one may add ζ /2 to all sides to get

(2.68) where all terms in the denominator of the middle side are positive whereas - фото 120

– where all terms in the denominator of the middle side are positive, whereas all terms (besides 1) in the right‐hand side are negative. Long (polynomial) division of 1 by 1 + ζ /2 + ζ 2/3 + ζ 3/4 + ⋯ (according to an algorithm to be presented below) allows further transformation of Eq. (2.68)to

(2.69) where condensation of terms alike in the middle side unfolds 270 after - фото 121

where condensation of terms alike in the middle side unfolds

(2.70) after having dropped unity from all sides and then taken their negatives Eq - фото 122

after having dropped unity from all sides, and then taken their negatives, Eq. (2.70)becomes

(2.71) which is a universal condition since 112 18 124 116 and so on in - фото 123

– which is a universal condition, since 1/12 < 1/8, 1/24 < 1/16, and so on in terms of pairwise comparison. Similar trends for the relative magnitude of the coefficients of similar powers would be found if the series were truncated after higher order terms – so one concludes on the general validity of Eq. (2.58), based on Eq. (2.71)complemented by Eq. (2.55).

2.1 Series

If u 1, u 2, …, u i, … constitute a given (infinitely long) sequence of numbers, one often needs to calculate the sum of the first n terms thereof – or n th partial sum, S n, defined as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x