F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ordered subtraction of Eq. (2.90)from Eq. (2.88)generates

(2.91) where may be factored out in the lefthand side and u 0in its right counterpart - фото 146

where may be factored out in the lefthand side and u 0in its right counterpart to - фото 147may be factored out in the left‐hand side and u 0in its right counterpart to obtain

(2.92) upon canceling out symmetrical terms in the righthand side and dividing both - фото 148

upon canceling out symmetrical terms in the right‐hand side, and dividing both sides by 1 − k afterward, Eq. (2.92)becomes

(2.93) Note that k 1 turns nil both numerator and denominator of Eq 293 so it - фото 149

Note that k = 1 turns nil both numerator and denominator of Eq. (2.93), so it is a (common) root thereof; Ruffini’s rule (see below) then permits reformulation of Eq. (2.93)to

(2.94) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 150

that mimics Eq. (2.87), as expected. Revisiting Eq. (2.72)with division of both sides by u 0, one may insert Eq. (2.93)to get

(2.95) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 151

Eq. (2.95)is illustrated in Fig. 2.5. Upon inspection of this plot, one anticipates a horizontal asymptote for k = 0.5 (besides k = 0); in general, one indeed finds that

(2.96) at the expense of Eqs 272 273 and 295 which is equivalent to - фото 152

at the expense of Eqs. (2.72), (2.73), and (2.95), which is equivalent to

(2.97) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 153

– and reduces to merely

(2.98) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 154

should k lie between 1 and 1, as it would give rise to a convergent series (i.e. k n + 1→ 0 when n → ∞, in this case). All remaining values, i.e. k ≤ −1 or k ≥ 1, produce divergent series – as apparent in Fig. 2.5; when k is nil, Eq. (2.93)turns to just

(2.99) which corresponds to the trivial case of only the first term of said series - фото 155

which corresponds to the trivial case of only the first term of said series being significant – and fully consistent with Eqs. (2.97)and (2.98).

Figure 25 Variation of value of n term geometric series S n normalized by - фото 156

Figure 2.5 Variation of value of n ‐term geometric series, S n, normalized by first term, u 0, as a function of n – for selected values of ratio, k .

An alternative proof of Eq. (2.93)comes from finite induction; one should first confirm that it applies to n = 0, i.e.

(2.100) Furthermore one should prove that if Eq 293is valid for any given n - фото 157

Furthermore, one should prove that, if Eq. (2.93)is valid for any given n , then it will necessarily apply to n + 1, viz.

(2.101) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 158

according to Eq. (2.87), one has it that

(2.102) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 159

per definition – or, after splitting the summation,

(2.103) Elimination of parenthesis transforms Eq 2103to 2104 where Eq 287 - фото 160

Elimination of parenthesis transforms Eq. (2.103)to

(2.104) where Eq 287 coupled with validity of Eq 293for a given n permit - фото 161

where Eq. (2.87), coupled with validity of Eq. (2.93)for a given n permit transformation of Eq. (2.104)to

(2.105) once u 0is factored out Eq 2105becomes 2106 and elimination of - фото 162

once u 0is factored out, Eq. (2.105)becomes

(2.106) and elimination of parenthesis produces in turn 2107 Cancelation of - фото 163

and elimination of parenthesis produces, in turn,

(2.107) Cancelation of symmetrical terms complemented with condensation of factors - фото 164

Cancelation of symmetrical terms, complemented with condensation of factors alike transform Eq. (2.107)to

(2.108) that coincides with Eq 2101 therefore Eq 293will be valid for n 1 - фото 165

that coincides with Eq. (2.101); therefore, Eq. (2.93)will be valid for n + 1 provided that it holds for n – and one accordingly concludes, together with its validity for n = 0, that Eq. (2.93)is universally applicable to (every) n .

2.1.3 Arithmetic/Geometric Series

An arithmetic/geometric sequence is the result of multiplying a geometric progression by an arithmetic progression, and looks like

(2.109) in general with k 1serving as increment and k 2serving as ratio besides u - фото 166

in general – with k 1serving as increment and k 2serving as ratio, besides u 0serving as first term; one may write Eq. (2.109)in a more condensed form as

(2.110) which is a hybrid of Eqs 276and 287 If both sides are multiplied by k - фото 167

– which is a hybrid of Eqs. (2.76)and (2.87). If both sides are multiplied by k 2, then Eq. (2.109)becomes

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x