F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

since b ‐based exponential and logarithm are inverse functions of each other, and Eq. (2.25)applies; after considering an analogue of Eq. (2.18)for the power of a power, one may redo Eq. (2.33)as

(2.34) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 83

In particular, Eq. (2.34)has it that

(2.35) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 84

for a ≡ 10 and b ≡ e – thus making a tool available to convert a natural exponential to a decimal exponential; note ln 10 appearing again as conversion factor, in parallel to Eq. (2.32).

Complex functions do often exhibit simple linear behaviors near specific finite value(s), or when their independent variable grows unbounded toward either −∞ or ; such a driving line – originally described by Apollonius of Perga in the Greek Antiquity, is termed asymptote, and represents a straight line tangent to the germane curve at infinity. A vertical asymptote is accordingly defined by

(2.36) or 237 typical examples of a are the zeros of the denominator or poles - фото 85

or

(2.37) typical examples of a are the zeros of the denominator or poles of rational - фото 86

typical examples of a are the zeros of the denominator (or poles) of rational functions, or the value(s) that turn nil the argument of a logarithmic function. Oblique asymptotes abide, in turn, to

(2.38) which will in particular be horizontal if b 0 division of both sides by - фото 87

– which will, in particular, be horizontal if b = 0; division of both sides by x transforms Eq. (2.38)to

(2.39) because 0 x 0 for x 0 as is the case where a x becoming in turn - фото 88

because 0/ x = 0 for x ≠ 0 (as is the case) – where a / x becoming, in turn, negligible when x → 0 permits simplification to

(2.40) If the limit described by Eq 240does not exist then there is no oblique - фото 89

If the limit described by Eq. (2.40)does not exist, then there is no oblique asymptote in that direction; otherwise, one may proceed and compute a from Eq. (2.38)via

(2.41) where b obviously abides to Eq 240 Although the concept of asymptote may - фото 90

where b obviously abides to Eq. (2.40). Although the concept of asymptote may be extended to other polynomial forms (e.g. quadratic) using essentially the same rationale, their determination (and usefulness) is far less common and rather limited.

When in the presence of two (or more, say, n ) real values, one may define the most likely value, or arithmetic mean (referred to via subscript arm, with denoting mean as 242 by the same token one can define a geometric mean - фото 91denoting mean) as

(2.42) by the same token one can define a geometric mean referred to via subscript - фото 92

by the same token, one can define a geometric mean (referred to via subscript gem) as

(2.43) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 93

The harmonic mean (referred to via subscript ham) satisfies

(2.44) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 94

or, after taking reciprocals of both sides,

(2.45) the aforementioned three means are useful in a great many problems depending - фото 95

the aforementioned three means are useful in a great many problems – depending on the underlying mathematical nature of the data, so their relative location deserves further exploitation (as done below).

Consider, for simplicity, only two values x 1and x 2; after realizing that

(2.46) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 96

for being a square – with validity assured irrespective of the relative magnitude of x 1and x 2, one may apply Newton’s binomial (to be considered shortly) to write

(2.47) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 97

Upon addition of 4 x 1 x 2to both sides, Eq. (2.47)becomes

(2.48) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 98

– where Newton’s binomial may again be invoked to support condensation to

(2.49) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 99

If square roots are taken of both sides, then Eq. (2.49)transforms to

(2.50) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 100

on the common assumption that both x 1and x 2are positive – whereas division of both sides by 2 unfolds

(2.51) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 101

based on Eqs. (2.42)and (2.43), one concludes that

(2.52) ie the arithmetic mean of two numbers never lies below their geometric mean - фото 102

– i.e. the arithmetic mean of two numbers never lies below their geometric mean (being equal only when x 1 = x 2).

On the other hand, inspection of Eq. (2.44) vis‐à‐vis with Eq. (2.42)indicates that is the arithmetic mean of 1 x 1and 1 x 2in the case of n 2 hence - фото 103is the arithmetic mean of 1/ x 1and 1/ x 2(in the case of n = 2); hence, application of the result conveyed by Eq. (2.52)indicates that

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x