F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.111) so ordered subtraction of Eq 2111from Eq 2109is in order to yield - фото 168

so ordered subtraction of Eq. (2.111)from Eq. (2.109)is in order to yield

(2.112) where parentheses were taken out for convenience after factoring out in the - фото 169

– where parentheses were taken out for convenience; after factoring out in the lefthand side and condensing similar terms in the righthand side - фото 170out in the left‐hand side, and condensing similar terms in the right‐hand side, Eq. (2.112)becomes

(2.113) One may now factor out k 1 k 2or as appropriate in Eq 2113to obtain - фото 171

One may now factor out k 1 k 2or as appropriate in Eq 2113to obtain 2114 where the content of the - фото 172(as appropriate) in Eq. (2.113)to obtain

(2.114) where the content of the first parenthesis in the righthand side is but a - фото 173

where the content of the first parenthesis in the right‐hand side is but a geometric series containing n terms; insertion of Eq. (2.93)with u 0 = 1 unfolds

(2.115) while division of both sides by 1 k 2gives then rise to 2116 A graphical - фото 174

while division of both sides by 1 − k 2gives then rise to

(2.116) A graphical representation of Eq 2116is made available in Fig 26 after - фото 175

A graphical representation of Eq. (2.116)is made available in Fig. 2.6– after recalling Eq. (2.72)and dividing both sides by u 0, i.e.

(2.117) n k 1 u 0and k 2were consequently utilized as independent parameters An - фото 176

n , k 1/ u 0and k 2were consequently utilized as independent parameters. An increasing n systematically produces a higher‐value series – and a similar effect is triggered by a larger k 1or a larger k 2; there is a horizontal asymptote when k 2 = 0.5 (besides the trivial case of k 2 = 0), in much the same way horizontal asymptotes arose in Fig. 2.5.

Figure 26 Variation of value of n term arithmeticgeometric series S n - фото 177

Figure 2.6 Variation of value of n ‐term arithmetic–geometric series, S n, normalized by first term, u 0, as a function of n – for selected values of increment, k 1, normalized also by u 0, and ratio, k 2, for (a) k 1/ u 0 = 0, (b) k 1/ u 0 = 0.5, (c) k 1/ u 0 = 1, and (d) k 1/ u 0 = 2.

In general, one realizes that

(2.118) with the aid of Eqs 272 273 and 2117 or else 2119 after - фото 178

with the aid of Eqs. (2.72), (2.73), and (2.117), or else

(2.119) after direct application of the theorems on limits If k 2 1 then Eq - фото 179

after direct application of the theorems on limits. If ∣ k 2∣ < 1, then Eq. (2.119)degenerates to

(2.120) where the first term entails an unknown quantity while as n was used to - фото 180

– where the first term entails an unknown quantity, while as n was used to simplify the second term after rewriting the second term - фото 181as n → ∞ was used to simplify the second term; after rewriting the second term in numerator of the first term of Eq. (2.119)as

(2.121) one gets an unknown quantity of the type so one may apply lHôpitals - фото 182

one gets an unknown quantity of the type / – so one may apply l’Hôpital’s rule to get

(2.122) Equation 2122degenerates to 2123 since k 2 1 insertion of Eq - фото 183

Equation (2.122)degenerates to

(2.123) since k 2 1 insertion of Eq 2123allows final transformation of Eq - фото 184

since ∣ k 2∣ < 1; insertion of Eq. (2.123)allows final transformation of Eq. (2.119)to

(2.124) which describes the vertical intercept of the horizontal asymptotes in Fig - фото 185

which describes the vertical intercept of the horizontal asymptotes in Fig. 2.6for curves with картинка 186. Therefore, the series is convergent when −1 < k 2< 1 – irrespective of the actual values of u 0and k 1, and divergent otherwise; as expected, Eq. (2.124)degenerates to Eq. (2.98)when k 1 = 0.

The trivial case, associated with k 1 = 0, transforms indeed Eq. (2.116)to

(2.125) after having u 0factored out and serves as descriptor of the curves plotted - фото 187

after having u 0factored out – and serves as descriptor of the curves plotted in Fig. 2.6a; Eq. (2.125)coincides with Eq. (2.93), corresponding to a plain geometric series, as expected from

(2.126) that in turn stems from Eqs 287and 2110 thus fully justifying - фото 188

that in turn stems from Eqs. (2.87)and (2.110)– thus fully justifying coincidence between Figs. 2.5and 2.6a. Conversely, k 2 = 0 converts Eq. (2.116)to

(2.127) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 189

which serves as descriptor of the bottom curves in Fig. 2.6, labeled as k 2= 0. When k 2→ 1, Eq. (2.116)becomes

(2.128) if the theorems on limits are blindly applied To circumvent the unknown - фото 190

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x