F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

in agreement with Eq. (2.161)– which may be condensed to

(2.163) where a 1 a 2 a n1denote intermediate coefficients of Taylors expansion - фото 229

where a 1, a 2, …, a n−1denote intermediate coefficients of Taylor’s expansion; one eventually obtains

(2.164) after merging Eqs 2161and 2163 or else 2165 upon straightforward - фото 230

after merging Eqs. (2.161)and (2.163), or else

(2.165) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 231

upon straightforward algebraic simplification. If ξ = r 1is a root of P n{ x }, then

(2.166) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 232

by definition; hence, Eq. (2.165)degenerates to

(2.167) so x r 1may be factored out to produce 2168 therefore r 1being a root - фото 233

– so xr 1may be factored out to produce

(2.168) therefore r 1being a root of P nimplies indeed that x r 1is a factor of P n - фото 234

therefore, r 1being a root of P nimplies indeed that xr 1is a factor of P n– in full agreement with Eq. (2.159).

Inspection of Eq. (2.168)indicates that an ( n − 1)th degree polynomial has been produced, viz.

(2.169) which may be reformulated to 2170 obtained after applying Newtons - фото 235

which may be reformulated to

(2.170) obtained after applying Newtons binomial formula to be derived shortly in - фото 236

– obtained after applying Newton’s binomial formula (to be derived shortly) in expansion of all powers of xr 1, and then lumping terms associated with the same power of x so as to produce coefficients b j; one may again proceed to Taylor’s expansion of P n−1{ x } as

(2.171) in parallel to Eq 2161 since n th and higherorder derivatives of P n1 - фото 237

in parallel to Eq. (2.161), since n th‐ and higher‐order derivatives of P n−1{ x } are nil. The resulting coefficients in Eq. (2.171)read

(2.172) or equivalently 2173 here b 1 b 2 b n2denote intermediate - фото 238

or, equivalently,

(2.173) here b 1 b 2 b n2denote intermediate coefficients of Taylors expansion - фото 239

here b 1, b 2, …, b n−2denote intermediate coefficients of Taylor’s expansion. Equation (2.173)may then be taken advantage of to rewrite Eq. (2.171)as

(2.174) where cancelation of n 1 between numerator and denominator of the last - фото 240

where cancelation of ( n − 1)! between numerator and denominator of the last term unfolds

(2.175) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 241

If one sets ξ equal to a root r 2of P n−1{ x }, abiding to

(2.176) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 242

then Eq. (2.175)simplifies to

(2.177) since x r 2appears in all terms of Eq 2177 it may be factored out to - фото 243

since xr 2appears in all terms of Eq. (2.177), it may be factored out to yield

(2.178) so insertion of Eq 2178transforms Eqs 2168and 2169to 2179 as - фото 244

– so insertion of Eq. (2.178)transforms Eqs. (2.168)and (2.169)to

(2.179) as long as 2180 The above process may be iterated as many times as the - фото 245

as long as

(2.180) The above process may be iterated as many times as the number of roots - фото 246

The above process may be iterated as many times as the number of roots – knowing that an n th‐degree polynomial holds n roots, i.e. r 1, r 2, …, r n(even though some of them may coincide); the final polynomial will accordingly look like

(2.181) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 247

– in line with Eqs. (2.165)and (2.175), and consequently

(2.182) will appear as general factorized form of any given polynomial as suggested by - фото 248

will appear as general factorized form of any given polynomial, as suggested by Eqs. (2.168)and (2.179).

One important consequence of the extended product form of Eq. (2.182)is that the coefficients of each power in the original polynomial P n{ x } bear a direct relationship to its roots, according to

(2.183) generated with the aid of Eq 2135 For instance the independent term of P - фото 249

generated with the aid of Eq. (2.135). For instance, the independent term of P n{ x } must result from the product of only (− r 1) × (− r 2) × … × (− r n) of factors xr 1, xr 2, …, xr n, respectively, in Eq. (2.182), so one may state

(2.184) similarly one finds that the highest order term in Eq 2135will necessarily - фото 250

similarly, one finds that the highest order term in Eq. (2.135)will necessarily result from the product of only x × x × ⋯ × x of factors xr 1, xr 2, …, xr n, respectively, in Eq. (2.182)– thus leading to the trivial result

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x