F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.185) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 251

By the same token, the terms in x n−1of Eq. (2.135)are accounted for by the product of x in xx 1, xx 2, …, xx i, xx i+1, …, xx n, respectively, of Eq. (2.182)by – r iin xr i, thus generating this is then to be extended via addition to i 1 2 n thus - фото 252; this is then to be extended, via addition, to i = 1, 2, …, n , thus eventually giving rise to

(2.186) as apparent in Eq 2183 The coefficients of all remaining terms can be - фото 253

as apparent in Eq. (2.183). The coefficients of all remaining terms can be generated in a similar fashion; for power x n−jin general, the x ’s of nj factors of the xr iform are to be picked up, and multiplied by the remaining j roots of the r iform – and the results added up, thus unfolding a composite set of j summations that account for all such combinations. Special care is to be exercised to increment the lower limit of each summation by one unit relative to the lower limit of the previous summation, and decrement the upper limit of each summation by one unit relative to the upper limit of the next summation; in this way, each possible combination is counted just once (as it should).

2.2.4 Splitting

Once in possession of the equivalent result conveyed by Eq. (2.182)but applied to P m{ x }, one may revisit Eq. (2.141)as

(2.187) or after lumping constant b mwith the corresponding polynomial in numerator - фото 254

– or, after lumping constant b mwith the corresponding polynomial in numerator,

(2.188) The roots r kof the polynomial in denominator may in general take real or - фото 255

The roots r kof the polynomial in denominator may, in general, take real or complex values (i.e. of the form α + ιβ ); when s lroots are equal to r k, one may lump the corresponding binomials as instead of multiplying x r lby itself s ltimes ie Eq 2188may - фото 256instead of multiplying xr lby itself s ltimes, i.e. Eq. (2.188)may alternatively appear as

(2.189) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 257

as long as the r l’s represent the s distinct roots (or poles) of P m{ x }, each with multiplicity s l, and Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 258. After splitting the denominator of the proper rational fraction in Eq. (2.189), one obtains

(2.190) where s 1was arbitrarily chosen among the multiple roots and denotes an - фото 259

– where s 1was arbitrarily chosen among the (multiple) roots, and denotes an m s 1th degree polynomial defined as 2191 and not holding - фото 260denotes an ( ms 1)th degree polynomial defined as

(2.191) and not holding r 1as root while U x is defined as 2192 and does not - фото 261

and not holding r 1as root, while U { x } is defined as

(2.192) and does not also have r 1as root If a partial fraction Α 11 is deliberately - фото 262

and does not also have r 1as root. If a partial fraction Α 1,1/ is deliberately separated from the righthand side of Eq 2190 then one may - фото 263is deliberately separated from the right‐hand side of Eq. (2.190), then one may write

(2.193) with Α 11denoting a putative constant since the lefthand side and the - фото 264

with Α 1,1denoting a (putative) constant; since the left‐hand side and the second term in the right‐hand side share their functional form, they may be pooled together as

(2.194) which is equivalent to 2195 in view of the common denominators of left - фото 265

– which is equivalent to

(2.195) in view of the common denominators of left and righthand sides By - фото 266

in view of the common denominators of left‐ and right‐hand sides. By hypothesis, neither U { x } nor картинка 267have r 1as root – otherwise картинка 268would not explicitly appear in Eq. (2.190); in fact, U { x } having r 1as root would permit factoring out of xr 1in numerator, so power s 1of картинка 269in denominator would be reduced – whereas картинка 270having r 1as root would allow factoring out of xr 1in denominator, so power s 1of картинка 271in denominator would be increased, and in either case the multiplicity of r 1would not equal s 1(as postulated). Hence, one may arbitrarily define (the still unknown) constant Α 1,1as

(2.196) note that both and are themselves constants ie polynomials of x - фото 272

note that both картинка 273and картинка 274are themselves constants, i.e. polynomials of x taken at a specific value of x , viz. r 1. If Eq. (2.196)is valid, then r 1becomes a root of Y as per Eq. (2.195), i.e.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x