F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.197) In view of Eq 2159 r 1being a root of Y supports 2198 where ς x - фото 275

In view of Eq. (2.159), r 1being a root of Y supports

(2.198) where ς x denotes an m 1th degree polynomial of x insertion in Eq - фото 276

where ς { x } denotes an ( m − 1)th degree polynomial of x ; insertion in Eq. (2.193)unfolds

(2.199) Equation 2199degenerates to 2200 after dropping x r 1from both - фото 277

Equation (2.199)degenerates to

(2.200) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 278

after dropping xr 1from both numerator and denominator of the first term in the right‐hand side; ς / Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 279is again a regular rational fraction, because the degree of ς { x } is lower than m − 1 (as indicated by the subscript utilized) – while the degree of the corresponding polynomial in denominator equals s 1– 1 + ( ms 1) = m − 1, on account of the degree s 1− 1 of Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 280and the degree ms 1of Therefore one may proceed to another splitting step of the type 2201 - фото 281. Therefore, one may proceed to another splitting step of the type

(2.201) with Α 12denoting a second constant to be replaced by 2202 in parallel to - фото 282

with Α 1,2denoting a second constant to be replaced by

(2.202) in parallel to Eq 2196obtained from Eq 2193 insertion of Eq - фото 283

in parallel to Eq. (2.196)obtained from Eq. (2.193); insertion of Eq. (2.201)transforms Eq. (2.200)to

(2.203) as long as following Eqs 2199and 2200as template This method may - фото 284

as long as following Eqs 2199and 2200as template This method may undergo up to s - фото 285, following Eqs. (2.199)and (2.200)as template. This method may undergo up to s 1iterations, to eventually produce

(2.204) The same rationale may then be applied to the second root r 2 of multiplicity - фото 286

The same rationale may then be applied to the second root r 2, of multiplicity s 2, and so on, until one gets

(2.205) therefore any proper rational fraction with poles r 1 r 2 r sor r for - фото 287

therefore, any proper rational fraction with poles r 1, r 2, …, r s(or r , for short) of multiplicity s 1, s 2, …, s s, respectively (or s for short), may be expanded as a sum of partial fractions bearing a constant in numerator, as well as xr , ( xr ) 2, …, ( xr ) ssequentially in denominator – irrespective of the mathematical nature of such roots.

To avoid emergence of complex numbers – and taking advantage of the fact that if a polynomial with real coefficients has complex roots then they always appear as conjugate pairs (otherwise its coefficients would necessarily be complex numbers), one may lump pairs of complex partial fractions as

(2.206) upon elimination of parentheses in numerator and rearrangement of inner - фото 288

upon elimination of parentheses in numerator, and rearrangement of inner parentheses in denominator, one gets

(2.207) After condensation of terms alike in numerator and recalling Eq 2140 ie - фото 289

After condensation of terms alike in numerator, and recalling Eq. (2.140), i.e. the product of two conjugate binomials equals the difference of their squares, Eq. (2.207)becomes

(2.208) since by definition ι 2 1 one may simplify Eq 2208to 2209 Once - фото 290

since, by definition, ι 2 = −1, one may simplify Eq. (2.208)to

(2.209) Once the square of the binomial in denominator is expanded as per Newtons - фото 291

Once the square of the binomial in denominator is expanded as per Newton’s rule, Eq. (2.209)becomes

(2.210) which may be rewritten as 2211 the new constants are defined as 2212 - фото 292

which may be rewritten as

(2.211) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 293

the new constants are defined as

(2.212) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 294

and

(2.213) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 295

pertaining to the numerator – complemented by

(2.214) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 296

and

(2.215) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 297

appearing in denominator. Therefore, any pair of partial fractions involving conjugate complex numbers in denominator may to advantage be replaced by a new type of (composite) partial fraction – constituted by a first‐order polynomial in numerator and a second‐order polynomial in denominator.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x