F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.249) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 341

arises when one sets n = 0; definition of power of nil exponent and summation, as well as Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 342lead to

(2.250) that entails a universal condition Suppose now that Eq 2236is valid for a - фото 343

that entails a universal condition. Suppose now that Eq. (2.236)is valid for a given n ; its left‐hand side would then read

(2.251) for n 1 where power splitting and application of the distributive property - фото 344

for n + 1, where power splitting and application of the distributive property meanwhile took place; insertion of Eq. (2.236)leads to

(2.252) since it applies to x y nby hypothesis After factoring x and y Eq - фото 345

since it applies to ( x + y ) nby hypothesis. After factoring x and y , Eq. (2.252)becomes

(2.253) where the last term of the first summation and the first term of the second - фото 346

where the last term of the first summation and the first term of the second summation may to advantage be made explicit as

(2.254) Equation 2254may take the simpler form 2255 because y 0 x 0 1 and - фото 347

Equation (2.254)may take the simpler form

(2.255) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 348

because y 0 = x 0 = 1 and Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 349. Replacement of the counting variable k + 1 in the first summation of Eq. (2.255)by k permits transformation to

(2.256) in view of the similarity of lower and upper limits for the two summations one - фото 350

in view of the similarity of lower and upper limits for the two summations, one may lump them to get

(2.257) where x k y n1kmay in turn be factored out as 2258 Equation - фото 351

– where x k y n+1−kmay, in turn, be factored out as

(2.258) Equation 2248may now be invoked to reformulate Eq 2258to 2259 while - фото 352

Equation (2.248)may now be invoked to reformulate Eq. (2.258)to

(2.259) while the first and last terms may be rewritten to get 2260 association of - фото 353

while the first and last terms may be rewritten to get

(2.260) association of such terms to the outstanding summation is then fully justified - фото 354

association of such terms to the outstanding summation is then fully justified, viz.

(2.261) If Eq 2261is rephrased as 2262 then it becomes clear that Eq - фото 355

If Eq. (2.261)is rephrased as

(2.262) then it becomes clear that Eq 2236will be valid for n 1 if it is already - фото 356

then it becomes clear that Eq. (2.236)will be valid for n + 1 if it is already valid for n ; further validity of Eq. (2.236), for the trivial case of n = 0 as per Eqs. (2.249)and (2.250), then suffices to support validity of Eq. (2.236)in general, as per finite induction.

Equation (2.236)obviously applies when a difference rather than a sum is at stake – as already perceived with Eq. (2.238); just replace y by − y , and then apply Newton’s binomial formula to x and −y , according to

(2.263) where the minus sign is often taken out to yield 2264 at the expense of - фото 357

– where the minus sign is often taken out to yield

(2.264) at the expense of 1 k 1 k As mentioned previously Newton - фото 358

at the expense of ( 1) k = ( 1) −k.

As mentioned previously, Newton generalized the binomial theorem so as to encompass real exponents other than nonnegative integers – and eventually came forward with

(2.265) where the generalized binomial coefficient should then read 2266 en - фото 359

where the generalized (binomial) coefficient should then read

(2.266) en lieu of Eq 2240 Pochhammers symbol r k stands here for a - фото 360

en lieu of Eq. (2.240); Pochhammer’s symbol, (( r )) k, stands here for a falling factorial, i.e.

(2.267) with r 0set equal to unity by convention which if r k 1 is an - фото 361

with (( r )) 0set equal to unity by convention – which, if r > k − 1 is an integer, may be reformulated to

(2.268) following multiplication and division by rk r k 11 For - фото 362

following multiplication and division by ( r−k )( r − ( k + 1))⋯1. For instance, Eqs. (2.265)– (2.267)give rise to

(2.269) where k because r 12 Eq 2269degenerates to 2270 or else - фото 363

where k → ∞∞ because r = 1/2; Eq. (2.269)degenerates to

(2.270) or else 2271 following straightforward algebraic manipulation and - фото 364

or else

(2.271) following straightforward algebraic manipulation and condensation afterward If - фото 365

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x