F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

as outlined in Fig. 2.10a, where Eq. (2.287)was taken advantage of; Eq. (2.302)may be redone to

(2.303) again after dividing numerator and denominator by and recalling Eqs - фото 403

again after dividing numerator and denominator by and recalling Eqs 2288and 2290 For a general argument x in rad - фото 404, and recalling Eqs. (2.288)and (2.290). For a general argument x (in rad ), one may accordingly state

(2.304) following comparative inspection of Eqs 2298and 2303 which varies with - фото 405

following comparative inspection of Eqs. (2.298)and (2.303)– which varies with argument x as depicted in Fig. 2.10d. Once again, a period of π rad is apparent, i.e.

(2.305) while Eqs 2301and 2304imply 2306 meaning that cotangent is also - фото 406

while Eqs. (2.301)and (2.304)imply

(2.306) meaning that cotangent is also an odd function The cotangent always - фото 407

– meaning that cotangent is also an odd function. The cotangent always decreases when x increases, and is driven by vertical asymptotes described by x = kπ (with relative integer k ) as can be perceived in Fig. 2.10d.

With regard to secant of angle θ , it follows from the ratio of the length of the hypotenuse, [ OB ], to the length of the adjacent leg, [ OA ], in triangle [ OAB ] – or, alternatively, as the ratio of the length of the hypotenuse, [ OD ], to the length of the adjacent leg, [ OB ], in triangle [ OBD ], according to

(2.307) as outlined in Fig 210a also at the expense of Eq 2287 one may - фото 408

– as outlined in Fig. 2.10a, also at the expense of Eq. (2.287); one may rewrite Eq. (2.307)as

(2.308) after taking the reciprocal of the reciprocal in view of Eq 2288 Once θ - фото 409

after taking the reciprocal of the reciprocal, in view of Eq. (2.288). Once θ is expressed in rad , Eq. (2.308)becomes

(2.309) as illustrated in Fig 210c Since this function repeats itself every 2 π - фото 410

– as illustrated in Fig. 2.10c. Since this function repeats itself every 2 π rad , i.e.

(2.310) it can be claimed as periodic furthermore its definition as per Eq - фото 411

it can be claimed as periodic; furthermore, its definition as per Eq. (2.309)entails

(2.311) with the aid of Eq 2296 so the secant is an even function and thus - фото 412

with the aid of Eq. (2.296), so the secant is an even function and thus symmetrical with regard to the vertical axis. The secant is not a monotonic function; it decreases and then increases within](2 k − 1) π /2,(2 k + 1) π /2[ for even integer k , with vertical asymptotes at the extremes, or vice versa with odd integer k .

Finally, the cosecant of angle θ is given by the ratio of the length of the hypotenuse, [ OB ], to the length of the opposite leg, [ AB ], in triangle [ OAB ] – or, equivalently, as the secant of the complementary angle of θ , i.e. the ratio of the length of the hypotenuse, [ OE ], to the length of the adjacent leg, [ OB ], in triangle [ OBE ], i.e.

(2.312) that incorporates Eq 2287 as depicted in Fig 210a therefore Eq - фото 413

that incorporates Eq. (2.287)– as depicted in Fig. 2.10a; therefore, Eq. (2.312)may be reformulated to read

(2.313) upon taking the reciprocal of the reciprocal owing to Eq 2290 For θ - фото 414

upon taking the reciprocal of the reciprocal, owing to Eq. (2.290). For θ expressed in rad , Eq. (2.313)will in general look like

(2.314) as plotted in Fig 210d A period of 2 π rad is again found viz 2315 - фото 415

– as plotted in Fig. 2.10d. A period of 2 π rad is again found, viz.

(2.315) in addition Eq 2314has it that 2316 with the aid of Eq 2295 - фото 416

in addition, Eq. (2.314)has it that

(2.316) with the aid of Eq 2295 should the argument be replaced by its negative - фото 417

with the aid of Eq. (2.295), should the argument be replaced by its negative – so the cosecant is symmetrical with regard to the origin of the axes, as per its odd behavior. Note that the cosecant increases and then decreases within](2 k − 1) π, 2 [ for integer k , bounded by vertical asymptotes described by x = (2 k − 1) π and x = 2 , respectively, and the other way round within]2 kπ, (2 k + 1) π [.

2.3.2 Angle Transformation Formulae

Referring again to Fig. 2.10a, one may label as u 1the unit vector centered at the origin, defining an angle θ 1with the horizontal axis – with coordinates (cos θ 1, sin θ 1) as per Eqs. (2.288)and (2.290); and likewise as u 2the unit vector centered at O but defining an angle θ 2– with coordinates (cos θ 2, sin θ 2), with θ 2 > θ 1for simplicity. Under these circumstances, the scalar product of u 1and u 2(to be discussed later) reads

(2.317) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 418

as per its defining algorithm, and because ‖ u 1‖ = ‖ u 2‖ = 1 by hypothesis; Eq. (2.317)readily simplifies to

(2.318) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 419

where θ 2− θ 1 > 0 represents the amplitude of the angle defined by vectors u 1and u 2, i.e. ∠ u 1, u 2. As will be duly proven below, u 1 · u 2may instead be calculated via

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x