F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

following straightforward algebraic manipulation and condensation afterward. If r is instead set equal to 1 and y set equal to 1, then Eq. (2.265)gives rise to

(2.272) where algebraic rearrangement supports dramatic simplification to 2273 - фото 366

– where algebraic rearrangement supports dramatic simplification to

(2.273) the righthand side is but a geometric series of first term equal to 1 and - фото 367

the right‐hand side is but a geometric series of first term equal to 1 and ratio between consecutive terms equal to −x , so one may retrieve Eq. (2.93)to write

(2.274) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 368

since Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 369when ∣ x ∣ < 1 – also consistent with ( x + 1) −1representing the reciprocal of x + 1 in the first place, as obtained by long division of 1 by 1 + x following the algorithm depicted in Fig. 2.8. One also finds that

(2.275) after replacement of x in Eq 2265by its negative y by 1 and exponent r by - фото 370

after replacement of x in Eq. (2.265)by its negative, y by 1, and exponent r by a general negative number −z ; Eq. (2.275)eventually yields

(2.276) If a rising factorial z k is defined as 2277 with evolution opposite - фото 371

If a rising factorial, ( z ) k, is defined as

(2.277) with evolution opposite to that entailed by Eq 2267 one may condense Eq - фото 372

with evolution opposite to that entailed by Eq. (2.267), one may condense Eq. (2.276)to

(2.278) In the case of a trinomial its square may be calculated via 2279 in - фото 373

In the case of a trinomial, its square may be calculated via

(2.279) in agreement with Eq 2237applied to x 1 x 2and x 3 rather than x and y - фото 374

in agreement with Eq. (2.237)applied to x 1 + x 2and x 3, rather than x and y ; a second application of said formula to ( x 1 + x 2) 2generates

(2.280) that may be rearranged to read 2281 upon elimination of parenthesis The - фото 375

that may be rearranged to read

(2.281) upon elimination of parenthesis The above reasoning may be applied to any - фото 376

upon elimination of parenthesis. The above reasoning may be applied to any (integer) exponent n , and to any number m of terms of polynomial x 1 + x 2 ++ x m; the generalized formula looks indeed like

(2.282) where the summation in the righthand side is taken over all sequences of - фото 377

where the summation in the right‐hand side is taken over all sequences of (nonnegative) integer indices k 1through k m, such that the sum of all k i’s is n . The multinomial coefficients are given by

(2.283) and count the number of different ways an n element set can be partitioned - фото 378

– and count the number of different ways an n ‐element set can be partitioned into disjoint subsets of sizes k 1, k 2, , k m. For the example above, one would have been led to

(2.284) after setting m 3 and n 2 in Eq 2282 while Eq 2283would yield - фото 379

after setting m = 3 and n = 2 in Eq. (2.282), while Eq. (2.283)would yield

(2.285) the possibilities of integer values for k 1 k 2 k 3 satisfying the - фото 380

the possibilities of integer values for ( k 1, k 2, k 3) satisfying the condition placed at the bottom of the summation in Eq. (2.284)encompass (2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), and (0,1,1) – so Eq. (2.284)becomes

(2.286) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 381

with the aid of Eq. (2.285). After realizing that 0! = 1, 2!/2! = 1, and 2!/1! = 2 – besides Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 382– one eventually retrieves Eq. (2.281), using Eq. (2.286)as departure point.

2.3 Trigonometric Functions

Trigonometry is the branch of mathematics that studies relationships involving lengths of sides and amplitudes of angles in triangles. This field emerged in the Hellenistic world during the third century, by the hand of Euclid and Archimedes – who studied the properties of chords and inscribed angles in circles, while proving theorems equivalent to most modern trigonometric formulae; Hipparchus from Nicaea (Asia Minor) produced, however, the first tables of chords in 140 BCE – analogous to the current tables of sine values, which were completed in the second century CE by Greco‐Egyptian astronomer Ptolemy from Alexandria (Egypt). By those times, it was realized that the lengths of the sides of a right triangle and the angles between those sides satisfy fixed relationships; hence, if at least the length of one side and the amplitude of one angle is known, then all other angles and lengths can be algorithmically determined.

2.3.1 Definition and Major Features

Consider a unit vector u, i.e.

(2.287) картинка 383

with double bars indicating length, centered at the origin of a system of coordinates, which rotates around said origin – as illustrated in Fig. 2.10a. If the angle defined by vector u(playing the role of hypotenuse in right triangle [ OAB ]) with the horizontal axis is denoted as θ , then cos θ equals, by definition, the ratio of the length of the adjacent leg, [ OA ], to the length of the hypotenuse, [ OB ], according to

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x