F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Although seldom of relevance, higher order constants, say A l, 3, A l, 4,…, may be calculated in a similar fashion – by resorting to higher order derivatives of Eq. (2.220), but accordingly requiring more cumbersome algebraic manipulations.

2.2.5 Power

According to Newton’s theorem, it is possible to expand the n th power (with n integer) of a sum of (real) terms, x and y , via a sum of a finite number of products of integer powers of x and y , with exponents adding up to n in every case; more specifically,

(2.236) Equation 2236is also known as binomial formula or binomial identity and x - фото 325

Equation (2.236)is also known as binomial formula, or binomial identity – and x and y may represent numbers, or instead functions. The first description of the above formula in its entirety, for nonnegative integer n , was due to Blaise Pascal – a French physicist, mathematician, and philosopher who lived in the seventeenth century; while Greek mathematician Euclid referred to its second order form in the fourth century BCE, and Indian mathematician Pingala mentioned higher orders one century later. However, it was Isaac Newton – who extended it to every real exponent in 1665, that has received credit for such a relationship thereafter.

The simplest case pertains indeed to n = 2, and accordingly reads

(2.237) being also known as another notable case of multiplication for positive - фото 326

– being also known as another notable case of multiplication; for positive values of x and y , this can be graphically illustrated as in Fig. 2.9. The area ( x + y ) 2of the larger square of side x + y may indeed be obtained via addition of the area of two smaller squares of sides x and y , i.e. x 2and y 2, respectively, to the area xy of each of two rectangles of sides x and y .

Figure 29 Geometric demonstration of Newtons binomial formula at two - фото 327

Figure 2.9 Geometric demonstration of Newton’s binomial formula at two dimensions – resorting to squares of side x and area x 2, side y and area y 2, and side x + y and area ( x + y ) 2, complemented with two rectangles of sides x and y and area xy .

If y is replaced by −y , then Eq. (2.237)gives rise to

(2.238) also known as another notable case of multiplication however a simple - фото 328

– also known as another notable case of multiplication; however, a simple geometrical interpretation is no longer possible (due to the negative term). A similar proof may be constructed in three dimensions, corresponding to the volume ( x + y ) 3of a cube of side x + y ; it may indeed be decomposed as

(2.239) ie the sum of volume x 2 y of each of three parallelipipeds of sides x x - фото 329

i.e. the sum of volume x 2 y of each of three parallelipipeds of sides x , x , and y , to the volume xy 2of each of three parallelipipeds of sides x , y , and y , and finally to the volume y 3of a cube of side y – besides being directly obtainable from Eq. (2.236)after setting n = 3.

The binomial coefficients in Eq. (2.236), of the form картинка 330, count in how many ways one can pick up a subset with k elements out from a set of n elements in total; in mathematical terms, this is equivalent to writing

(2.240) and supports the entries of Pascals triangle denoted as Table 21 Careful - фото 331

and supports the entries of Pascal’s triangle – denoted as Table 2.1. Careful inspection of this table indicates that the outermost values are always unity, whereas every two consecutive numbers in a given row add up to the value placed in between at the next row. In fact, Eq. (2.240)allows one to write

(2.241) where factoring n coupled with elimination of inner parenthesis give rise to - фото 332

where factoring n ! coupled with elimination of inner parenthesis give rise to

(2.242) the factorials in denominator may in turn be rewritten as 2243 based on - фото 333

the factorials in denominator may, in turn, be rewritten as

(2.243) based on their definition thus allowing further factoring out of k 1 and - фото 334

based on their definition, thus allowing further factoring out of ( k − 1)! and ( nk )! as

(2.244) Upon lumping the two factors still in parenthesis Eq 2244becomes 2245 - фото 335

Upon lumping the two factors still in parenthesis, Eq. (2.244)becomes

(2.245) that degenerates to 2246 the outstanding factors may in turn be lumped - фото 336

that degenerates to

(2.246) the outstanding factors may in turn be lumped with the existing factorials to - фото 337

the outstanding factors may, in turn, be lumped with the existing factorials to yield

(2.247) equivalent in view of Eq 2240 to 2248 thus confirming the initial - фото 338

– equivalent, in view of Eq. (2.240), to

(2.248) thus confirming the initial suggestion and being frequently known as Pascals - фото 339

thus confirming the initial suggestion and being frequently known as Pascal’s rule.

Table 2.1 Pascal’s triangle encompassing coefficients of power of binomial, картинка 340, for the first values of n – and, in each case, for k = 0, 1, … , n − 1 , n .

n
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

In order to exactly prove Eq. (2.236), one should start by realizing that

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x