F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.288) that degenerates to 2289 where Eq 2287was employed to advantage - фото 384

that degenerates to

(2.289) where Eq 2287was employed to advantage hence cos θ is but the distance - фото 385

– where Eq. (2.287)was employed to advantage; hence, cos θ is but the distance, картинка 386, of the extreme point, B , of the said vector to the vertical axis. By the same token, sin θ equals, by definition, the ratio of the length of the opposite leg, [ AB ], to the length of the hypotenuse, according to

(2.290) which may be rewritten as 2291 in view again of Eq 2287 therefore - фото 387

which may be rewritten as

(2.291) in view again of Eq 2287 therefore sin θ is given by the distance of - фото 388

in view again of Eq. (2.287); therefore, sin θ is given by the distance, картинка 389, of the extreme point, B , of uto the horizontal axis. Sine and cosine constitute the basic trigonometric functions; they are also known as circular functions, owing to the loci of the extreme points of udescribing a circle upon full rotation – as per Fig. 2.10a.

Figure 210 a Trigonometric circle described by vector u of unit length - фото 390

Figure 2.10 (a) Trigonometric circle, described by vector u of unit length centered at origin O , after full rotation by 2 π rad around O – together with tangent to the said circle extended until crossing the axes, angle defined by uand the horizontal axis of amplitude θ , and definition of trigonometric functions as lengths of associated straight segments; and variation, with their argument x , of major trigonometric functions, viz. (b) sine (sin) and cosine (cos), (c) tangent (tan) and secant (sec), and (d) cotangent (cotan) and cosecant (cosec).

The amplitude of the aforementioned angle θ is normally reported in radian , so it will for convenience be termed x hereafter; sin x and cos x are accordingly plotted in Fig. 2.10b, as a function of x (expressed in that unit). Note their periodic nature, with period 2 π rad , i.e.

(2.292) and 2293 and also their lower and upper bounds ie 1 and 1 It becomes - фото 391

and

(2.293) and also their lower and upper bounds ie 1 and 1 It becomes apparent from - фото 392

and also their lower and upper bounds, i.e. 1 and 1. It becomes apparent from inspection of Fig. 2.10b that the plot of cos x may be obtained from the plot of sin x via a horizontal translation of π /2 rad leftward; in other words,

(2.294) and such a complementarity to a right angle of amplitude π 2 rad - фото 393

– and such a complementarity to a right angle, of amplitude π /2 rad , justifies the term cosine (with prefix ‐co standing for complementary, or adding up to a right angle). The sine is an odd function, i.e.

(2.295) hence its plot is symmetrical relative to the origin of coordinates - фото 394

hence, its plot is symmetrical relative to the origin of coordinates. Conversely, the cosine is an even function, i.e.

(2.296) meaning that its plot is symmetrical relative to the vertical axis The - фото 395

– meaning that its plot is symmetrical relative to the vertical axis.

The tangent of angle θ may be defined as the ratio of the length of the opposite leg, [ AB ], to the length of the adjacent leg, [ OA ], in triangle [ OAB ] – or, alternatively, as the ratio of the length of the opposite leg, [ BD ], to the length of the adjacent leg, [ OB ], in triangle [ OBD ], according to

(2.297) once more with the aid of Eq 2287 and as emphasized in Fig 210a note - фото 396

– once more with the aid of Eq. (2.287), and as emphasized in Fig. 2.10a; note that Eq. (2.297)may also appear as

(2.298) following division of both numerator and denominator by and with the extra - фото 397

following division of both numerator and denominator by and with the extra aid of Eqs 2288and 2290 If θ is expressed in rad - фото 398, and with the extra aid of Eqs. (2.288)and (2.290). If θ is expressed in rad , then one has

(2.299) in general as plotted in Fig 210c Note that tangent is still a periodic - фото 399

in general – as plotted in Fig. 2.10c. Note that tangent is still a periodic function, but of smaller period, π rad , according to

(2.300) whereas combination of Eqs 2295 2296 and 2299implies that 2301 - фото 400

whereas combination of Eqs. (2.295), (2.296), and (2.299)implies that

(2.301) so the trigonometric tangent is an odd function The tangent is also a - фото 401

– so the (trigonometric) tangent is an odd function. The tangent is also a monotonically increasing function – yet it exhibits vertical asymptotes at x = kπ /2 (with relative integer k ), see again Fig. 2.10c.

The cotangent of angle θ may, in turn, be defined as the ratio of the length of the adjacent leg, [ OA ], to the length of the opposite leg, [ AB ], in triangle [ OAB ] – or, instead, as the tangent of the complementary of angle θ , i.e. ∠ BOE , via the ratio of the length of the opposite leg, [ BE ], to the length of the adjacent leg, [ OB ], in triangle [ OBE ], viz.

(2.302) as outlined in Fig 210a where Eq 2287was taken advantage of Eq - фото 402

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x