Samprit Chatterjee - Handbook of Regression Analysis With Applications in R
Здесь есть возможность читать онлайн «Samprit Chatterjee - Handbook of Regression Analysis With Applications in R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Handbook of Regression Analysis With Applications in R
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Handbook of Regression Analysis With Applications in R: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Regression Analysis With Applications in R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
andbook and reference guide for students and practitioners of statistical regression-based analyses in R
Handbook of Regression Analysis
with Applications in R, Second Edition
The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include:
Regularization methods Smoothing methods Tree-based methods In the new edition of the
, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website.
Of interest to undergraduate and graduate students taking courses in statistics and regression, the
will also be invaluable to practicing data scientists and statisticians.
and
(this correlation is called the multiple correlation coefficient). That is,
is a direct measure of how similar the observed and fitted target values are.
is biased upwards as an estimate of the population proportion of variability accounted for by the regression. The adjusted
corrects this bias, and equals
is large relative to
(that is, unless the number of predictors is large relative to the sample size),
and
will be close to each other, and the choice of which to use is a minor concern. What is perhaps more interesting is the nature of
as providing an explicit tradeoff between the strength of the fit (the first term, with larger
corresponding to stronger fit and larger
) and the complexity of the model (the second term, with larger
corresponding to more complexity and smaller
). This tradeoff of fidelity to the data versus simplicity will be important in the discussion of model selection in Section 2.3.1.
. An unbiased estimate is provided by the residual mean square,
really say anything of value about
? This isn't a question that can be answered completely statistically; it requires knowledge and understanding of the data and the underlying random process (that is, it requires context). Recall that the model assumes that the errors are normally distributed with standard deviation
. This means that, roughly speaking,
of the time an observed
value falls within
of the expected response
can be estimated for any given set of
values using
that can be used in constructing this rough prediction interval
.