Samprit Chatterjee - Handbook of Regression Analysis With Applications in R

Здесь есть возможность читать онлайн «Samprit Chatterjee - Handbook of Regression Analysis With Applications in R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Regression Analysis With Applications in R: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Regression Analysis With Applications in R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

H
andbook and reference guide for students and practitioners of statistical regression-based analyses in R
Handbook of Regression Analysis 
with Applications in R, Second Edition 
The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: 
Regularization methods Smoothing methods Tree-based methods In the new edition of the 
, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. 
Of interest to undergraduate and graduate students taking courses in statistics and regression, the 
will also be invaluable to practicing data scientists and statisticians.

Handbook of Regression Analysis With Applications in R — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Regression Analysis With Applications in R», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This is a situation where the distinction between a confidence interval for a fitted value and a prediction interval (and which is of more interest to a particular person) is clear. Consider a house with картинка 134bedrooms, картинка 135bathroom, картинка 136square feet of living area, картинка 137square foot lot size, built in 1948, with картинка 138in property taxes. Substituting those values into the above equation gives an estimated expected sale price of a house with these characteristics equal to картинка 139. A buyer or a seller is interested in the sale price of one particular house, so a prediction interval for the sale price would provide a range for what the buyer can expect to pay and the seller expect to get. The standard error of the estimate Handbook of Regression Analysis With Applications in R - изображение 140can be used to construct a rough prediction interval, in that roughly of the time a house with these characteristics can be expected to sell for - фото 141of the time a house with these characteristics can be expected to sell for within of that estimated sale price but a more exact interval might be required On - фото 142of that estimated sale price, but a more exact interval might be required. On the other hand, a home appraiser or tax assessor is more interested in the typical (average) sale price for all homes of that type in the area, so they can give a justifiable interval estimate giving the precision of the estimate of the true expected value of the house, so a confidence interval for the fitted value is desired.

Exact intervals for a house with these characteristics can be obtained from - фото 143intervals for a house with these characteristics can be obtained from statistical software, and turn out to be for the prediction interval and for the confidence interval As expected the - фото 144for the prediction interval and for the confidence interval As expected the prediction interval is much wider - фото 145for the confidence interval. As expected, the prediction interval is much wider than the confidence interval, since it reflects the inherent variability in sale prices in the population of houses; indeed, it is probably too wide to be of any practical value in this case, but an interval with smaller coverage (that is expected to include the actual price only of the time say might be useful a interval in this case would be so a sel - фото 146of the time, say) might be useful (a interval in this case would be so a seller could be told that there is a cha - фото 147interval in this case would be so a seller could be told that there is a chance that their house will sell - фото 148, so a seller could be told that there is a картинка 149chance that their house will sell for a value in this range).

The validity of all of these results depends on whether the assumptions hold. Figure 1.5gives a scatter plot of the residuals versus the fitted values and a normal plot of the residuals for this model fit. There is no apparent pattern in the plot of residuals versus fitted values, and the ordered residuals form a roughly straight line in the normal plot, so there are no apparent violations of assumptions here. The plot of residuals versus each of the predictors ( Figure 1.6) also does not show any apparent patterns, other than the houses with unusual living area and year being built, respectively. It would be reasonable to omit these observations to see if they have had an effect on the regression, but we will postpone discussion of that to Chapter 3, where diagnostics for unusual observations are discussed in greater detail.

An obvious consideration at this point is that the models discussed here appear to be overspecified; that is, they include variables that do not apparently add to the predictive power of the model. As was noted earlier, this suggests the consideration of model building, where a more appropriate (simplified) model can be chosen, which will be discussed in Chapter 2.

FIGURE 15 Residual plots for the home price data a Plot of residuals - фото 150

FIGURE 1.5: Residual plots for the home price data. (a) Plot of residuals versus fitted values. (b) Normal plot of the residuals.

FIGURE 16 Scatter plots of residuals versus each predictor for the home price - фото 151

FIGURE 1.6: Scatter plots of residuals versus each predictor for the home price data.

1.5 Summary

In this chapter we have laid out the basic structure of the linear regression model, including the assumptions that justify the use of least squares estimation. The three main goals of regression noted at the beginning of the chapter provide a framework for an organization of the topics covered.

1 Modeling the relationship between and :the least squares estimates summarize the expected change in for a given change in an , accounting for all of the variables in the model;the standard error of the estimate estimates the standard deviation of the errors; and estimate the proportion of variability in accounted for by ;and the confidence interval for a fitted value provides a measure of the precision in estimating the expected target for a given set of predictor values.

2 Prediction of the target variable:substituting specified values of into the fitted regression model gives an estimate of the value of the target for a new observation;the rough prediction interval provides a quick measure of the limits of the ability to predict a new observation;and the exact prediction interval provides a more precise measure of those limits.

3 Testing of hypotheses:the ‐test provides a test of the statistical significance of the overall relationship;the ‐test for each slope coefficient testing whether the true value is zero provides a test of whether the variable provides additional predictive power given the other variables;and the ‐tests can be generalized to test other hypotheses of interest about the coefficients as well.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Regression Analysis With Applications in R»

Представляем Вашему вниманию похожие книги на «Handbook of Regression Analysis With Applications in R» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Regression Analysis With Applications in R»

Обсуждение, отзывы о книге «Handbook of Regression Analysis With Applications in R» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x