Samprit Chatterjee - Handbook of Regression Analysis With Applications in R
Здесь есть возможность читать онлайн «Samprit Chatterjee - Handbook of Regression Analysis With Applications in R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Handbook of Regression Analysis With Applications in R
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Handbook of Regression Analysis With Applications in R: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Regression Analysis With Applications in R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
andbook and reference guide for students and practitioners of statistical regression-based analyses in R
Handbook of Regression Analysis
with Applications in R, Second Edition
The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include:
Regularization methods Smoothing methods Tree-based methods In the new edition of the
, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website.
Of interest to undergraduate and graduate students taking courses in statistics and regression, the
will also be invaluable to practicing data scientists and statisticians.
confidence interval for
has the form
is the appropriate critical value at two‐sided level
for a
‐distribution on
degrees of freedom.
discussed in Section 1.3.2is an approximate
interval because it ignores the variability caused by the need to estimate
and uses only an approximate normal‐based critical value. A more accurate assessment of predictive power is provided by a prediction intervalgiven a particular value of
. This interval provides guidance as to how precise
is as a prediction of
for some particular specified value
, where
is determined by substituting the values
into the estimated regression equation. Its width depends on both
and the position of
relative to the centroid of the predictors (the point located at the means of all predictors), since values farther from the centroid are harder to predict as precisely. Specifically, for a simple regression, the estimated standard error of a predicted value based on a value
of the predicting variable is

is taken to include a
in the first entry (corresponding to the intercept in the regression model). The prediction interval is then
.
for one member of the population with a particular value of
; the confidence interval is used to provide an interval estimate for the true expected value of
for all members of the population with a particular value of
. The corresponding standard error, termed the standard error for a fitted value, is the square root of
term, which corresponds to the inherent variability in the population. Thus, the confidence interval for a fitted value will always be narrower than the prediction interval, and is often much narrower (especially for large samples), since increasing the sample size will always improve estimation of the expected response value, but cannot lessen the inherent variability in the population associated with the prediction of the target for a single observation.