Samprit Chatterjee - Handbook of Regression Analysis With Applications in R

Здесь есть возможность читать онлайн «Samprit Chatterjee - Handbook of Regression Analysis With Applications in R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Regression Analysis With Applications in R: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Regression Analysis With Applications in R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

H
andbook and reference guide for students and practitioners of statistical regression-based analyses in R
Handbook of Regression Analysis 
with Applications in R, Second Edition 
The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: 
Regularization methods Smoothing methods Tree-based methods In the new edition of the 
, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. 
Of interest to undergraduate and graduate students taking courses in statistics and regression, the 
will also be invaluable to practicing data scientists and statisticians.

Handbook of Regression Analysis With Applications in R — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Regression Analysis With Applications in R», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 Choose the model that minimizes . In case of tied values, the simplest model (smallest ) would be chosen. In these data, this rule implies choosing .

An additional operational rule for the use of картинка 282has been suggested. When a particular model contains all of the necessary predictors, the residual mean square for the model should be roughly equal to картинка 283. Since the model that includes all of the predictors should also include all of the necessary ones, картинка 284should also be roughly equal to This implies that if a model includes all of the necessary predictors then - фото 285. This implies that if a model includes all of the necessary predictors, then

This suggests the following model selection rule 1 Choose the simplest model - фото 286

This suggests the following model selection rule:

1 Choose the simplest model such that or smaller. In these data, this rule implies choosing .

A weakness of the картинка 287criterion is that its value depends on the largest set of candidate predictors (through картинка 288), which means that adding predictors that provide no predictive power to the set of candidate models can change the choice of best model. A general approach that avoids this is through the use of statistical information. A detailed discussion of the determination of information measures is beyond the scope of this book, but Burnham and Anderson (2002) provides extensive discussion of the topic. The Akaike Information Criterion introduced by Akaike 1973 22 where the function refers - фото 289, introduced by Akaike (1973),

(2.2) where the function refers to natural logs is such a measure and it estimates - фото 290

where the картинка 291function refers to natural logs, is such a measure, and it estimates the information lost in approximating the true model by a candidate model. It is clear from (2.2)that minimizing картинка 292achieves the goal of balancing strength of fit with simplicity, and because of the картинка 293term in the criterion this will result in the choice of similar models as when minimizing картинка 294. It is well known that картинка 295has a tendency to lead to overfitting, particularly in small samples. That is, the penalty term in картинка 296designed to guard against too complicated a model is not strong enough. A modified version of that helps address this problem is the corrected 23 Hurvi - фото 297that helps address this problem is the corrected 23 Hurvich and Tsai 1989 Equation 23shows that especially for - фото 298,

(2.3) Hurvich and Tsai 1989 Equation 23shows that especially for small - фото 299

(Hurvich and Tsai, 1989). Equation (2.3)shows that (especially for small samples) models with fewer parameters will be more strongly preferred when minimizing картинка 300than when minimizing картинка 301, providing stronger protection against overfitting. In large samples, the two criteria are virtually identical, but in small samples, or when considering models with a large number of parameters, картинка 302is the better choice. This suggests the following model selection rule:

1 Choose the model that minimizes . In case of tied values, the simplest model (smallest ) would be chosen. In these data, this rule implies choosing , although the value for is virtually identical to that of . Note that the overall level of the values is not meaningful, and should not be compared to values or values for other data sets; it is only the value for a model for a given data set relative to the values of others for that data set that matter.

картинка 303, картинка 304, and картинка 305have the desirable property that they are efficient model selection criteria. This means that in the (realistic) situation where the set of candidate models does not include the “true” model (that is, a good model is just viewed as a useful approximation to reality), as the sample gets larger the error obtained in making predictions using the model chosen using these criteria becomes indistinguishable from the error obtained using the best possible model among all candidate models. That is, in this large‐sample predictive sense, it is as if the best approximation was known to the data analyst. Another well‐known criterion, the Bayesian Information Criterion Handbook of Regression Analysis With Applications in R - изображение 306[which substitutes Handbook of Regression Analysis With Applications in R - изображение 307for картинка 308in (2.2)], does not have this property, but is instead a consistent criterion. Such a criterion has the property that if the “true” model is in fact among the candidate models the criterion will select that model with probability approaching картинка 309as the sample size increases. Thus, картинка 310is a more natural criterion to use if the goal is to identify the “true” predictors with nonzero slopes (which of course presumes that there are such things as “true” predictors in a “true” model). Handbook of Regression Analysis With Applications in R - изображение 311will generally choose simpler models than Handbook of Regression Analysis With Applications in R - изображение 312because of its stronger penalty ( Handbook of Regression Analysis With Applications in R - изображение 313for картинка 314), and a version картинка 315that adjusts картинка 316as in (2.3)leads to even simpler models. This supports the notion that from a predictive point of view including a few unnecessary predictors (overfitting) is far less damaging than is omitting necessary predictors (underfitting).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Regression Analysis With Applications in R»

Представляем Вашему вниманию похожие книги на «Handbook of Regression Analysis With Applications in R» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Regression Analysis With Applications in R»

Обсуждение, отзывы о книге «Handbook of Regression Analysis With Applications in R» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x