Samprit Chatterjee - Handbook of Regression Analysis With Applications in R

Здесь есть возможность читать онлайн «Samprit Chatterjee - Handbook of Regression Analysis With Applications in R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Regression Analysis With Applications in R: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Regression Analysis With Applications in R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

H
andbook and reference guide for students and practitioners of statistical regression-based analyses in R
Handbook of Regression Analysis 
with Applications in R, Second Edition 
The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: 
Regularization methods Smoothing methods Tree-based methods In the new edition of the 
, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. 
Of interest to undergraduate and graduate students taking courses in statistics and regression, the 
will also be invaluable to practicing data scientists and statisticians.

Handbook of Regression Analysis With Applications in R — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Regression Analysis With Applications in R», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

There is a straightforward way to get a sense of the predictive power of a chosen model if enough data are available. This can be evaluated by holding out some data from the analysis (a holdoutor validationsample), applying the selected model from the original data to the holdout sample (based on the previously estimated parameters, not estimates based on the new data), and then examining the predictive performance of the model. If, for example, the standard deviation of the errors from this prediction is not very different from the standard error of the estimate in the original regression, chances are making inferences based on the chosen model will not be misleading. Similarly, if a (say) картинка 336prediction interval does not include roughly of the new observations that indicates poorerthanexpected predictive - фото 337of the new observations, that indicates poorer‐than‐expected predictive performance on new data.

FIGURE 23 Plot of observed versus predicted house sale price values of - фото 338

FIGURE 2.3: Plot of observed versus predicted house sale price values of validation sample, with pointwise картинка 339prediction interval limits superimposed. The dotted line corresponds to equality of observed values and predictions.

Figure 2.3illustrates a validation of the three‐predictor housing price model on a holdout sample of картинка 340houses. The figure is a plot of the observed versus predicted prices, with pointwise картинка 341prediction interval limits superimposed. The intervals contain картинка 342of the prices ( картинка 343of картинка 344), and the average predictive error on the new houses is only картинка 345(compared to an average observed price of more than картинка 346), not suggesting the presence of any forecasting bias in the model. Two of the houses, however, have sale prices well below what would have been expected (more than картинка 347lower than expected), and this is reflected in a much higher standard deviation ( Handbook of Regression Analysis With Applications in R - изображение 348) of the predictive errors than Handbook of Regression Analysis With Applications in R - изображение 349from the fitted regression. If the two outlying houses are omitted, the standard deviation of the predictive errors is much smaller ( картинка 350), suggesting that while the fitted model's predictive performance for most houses is in line with its performance on the original sample, there are indications that it might not predict well for the occasional unusual house.

If validating the model on new data this way is not possible, a simple adjustment that is helpful is to estimate the variance of the errors as

(2.4) where is based on the chosen best model and is the number of pr - фото 351

where картинка 352is based on the chosen “best” model, and картинка 353is the number of predictors in the most complex model examined, in the sense of most predictors (Ye, 1998). Clearly, if very complex models are included among the set of candidate models, картинка 354can be much larger than the standard error of the estimate from the chosen model, with correspondingly wider prediction intervals. This reinforces the benefit of limiting the set of candidate models (and the complexity of the models in that set) from the start. In this case Handbook of Regression Analysis With Applications in R - изображение 355, so the effect is not that pronounced.

The adjustment of the denominator in (2.4)to account for model selection uncertainty is just a part of the more general problem that standard degrees of freedom calculations are no longer valid when multiple models are being compared to each other as in the comparison of all models with a given number of predictors in best subsets. This affects other uses of those degrees of freedom, including the calculation of information measures like картинка 356, картинка 357, картинка 358, and картинка 359, and thus any decisions regarding model choice. This problem becomes progressively more serious as the number of potential predictors increases and is the subject of active research. This will be discussed further in Chapter 14.

2.4 Indicator Variables and Modeling Interactions

It is not unusual for the observations in a sample to fall into two distinct subgroups; for example, people are either male or female. It might be that group membership has no relationship with the target variable (given other predictors); such a pooled modelignores the grouping and pools the two groups together.

On the other hand, it is clearly possible that group membership is predictive for the target variable (for example, expected salaries differing for men and women given other control variables could indicate gender discrimination). Such effects can be explored easily using an indicator variable, which takes on the value картинка 360for one group and картинка 361for the other (such variables are sometimes called dummy variablesor variables The model takes the form where is an ind - фото 362 variables). The model takes the form

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Regression Analysis With Applications in R»

Представляем Вашему вниманию похожие книги на «Handbook of Regression Analysis With Applications in R» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Regression Analysis With Applications in R»

Обсуждение, отзывы о книге «Handbook of Regression Analysis With Applications in R» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x