Samprit Chatterjee - Handbook of Regression Analysis With Applications in R

Здесь есть возможность читать онлайн «Samprit Chatterjee - Handbook of Regression Analysis With Applications in R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Regression Analysis With Applications in R: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Regression Analysis With Applications in R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

H
andbook and reference guide for students and practitioners of statistical regression-based analyses in R
Handbook of Regression Analysis 
with Applications in R, Second Edition 
The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: 
Regularization methods Smoothing methods Tree-based methods In the new edition of the 
, the data analyst’s toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. 
Of interest to undergraduate and graduate students taking courses in statistics and regression, the 
will also be invaluable to practicing data scientists and statisticians.

Handbook of Regression Analysis With Applications in R — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Regression Analysis With Applications in R», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
for counties that did not use electronic voting in 2004 and for counties that - фото 414

for counties that did not use electronic voting in 2004, and

for counties that did use electronic voting This is represented in Figure 25 - фото 415

for counties that did use electronic voting. This is represented in Figure 2.5. This relationship implies that in counties that did not use electronic voting the more Republican a county was in 2000, the larger the gain for Bush in 2004, while in counties with electronic voting, the opposite pattern held true.

FIGURE 25 Regression lines for election data separated by whether the county - фото 416

FIGURE 2.5: Regression lines for election data separated by whether the county used electronic voting in 2004.

As can be seen from the VIFs, the predictor and the product variable are collinear. This isn't very surprising, since one is a function of the other, and such collinearity is more likely to occur if one of the subgroups is much larger than the other, or if group membership is related to the level or variability of the predictor variable. Given that using the product variable is just a computational construction that allows the fitting of two separate regression lines, this is not a problem in this context.

This model is probably underspecified, as it does not include control variables that would be expected to be related to voting percentage. Figure 2.6gives scatter plots of the percentage change in Bush votes versus (a) the total county voter turnouts in 2000 and (b) 2004, (c) median income, and (d) percentage of the voters being Hispanic. None of the marginal relationships are very strong, but in the multiple regression summarized below, median income does seem to add important predictive power without changing the previous relationships between change in Bush voting percentage and 2000 Bush percentage very much.

Coefficients: Estimate Std.Error t val P(>|t|) VIF (Intercept) 1.166e+00 2.55e+00 0.46 0.650 Bush.pct.2000 1.639e-01 3.69e-02 4.45 3.9e-5 1.55 *** e.Voting 1.426e+01 4.84e+00 2.95 0.005 54.08 ** Bush.2000 X e.Voting -2.545e-01 8.47e-02 -3.01 0.004 47.91 ** Vote.turn.2000 -5.957e-06 3.10e-05 -0.19 0.848 210.66 Vote.turn.2004 1.413e-06 2.49e-05 0.06 0.955 205.81 Median.income -1.745e-04 5.61e-05 -3.11 0.003 1.66 ** Hispan.pop.pct -4.127e-02 3.18e-02 -1.30 0.200 1.32 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.244 on 59 degrees of freedom Multiple R-squared: 0.4624, Adjusted R-squared: 0.3986 F-statistic: 7.25 on 7 and 59 DF, p-value: 2.936e-06 FIGURE 26 Plots for the 2004 election data a Plot of percentage change in - фото 417

FIGURE 2.6: Plots for the 2004 election data. (a) Plot of percentage change in Bush vote versus 2000 voter turnout. (b) Plot of percentage change in Bush vote versus 2004 voter turnout. (c) Plot of percentage change in Bush vote versus median income. (d) Plot of percentage change in Bush vote versus percentage Hispanic voters.

We could consider simplifying the model here, but often researchers prefer to not remove control variables, even if they do not add to the fit, so that they can be sure that the potential effect is accounted for. This is generally not unreasonable if collinearity is not a problem, but control variables that do not provide additional significant predictive power, but are collinear with the variables that are of direct interest, might be worth removing so they don't obscure the relationships involving the more important variables. In these data the two voter turnout variables are (not surprisingly) highly collinear, but a potential simplification to consider (particularly given that the target variable is the change in Bush voting percentage from 2000 to 2004) is to consider the change in voter turnout as a predictor (the fact that the estimated slope coefficients for 2000 and 2004 voter turnout are of opposite signs and not very different also supports this idea). The model using change in voter turnout is a subset of the model using 2000 and 2004 voter turnout separately (corresponding to restriction Handbook of Regression Analysis With Applications in R - изображение 418), so the two models can be compared using a partial картинка 419‐test. As can be seen below, the fit of the simpler model is similar to that of the more complicated one, collinearity is no longer a problem, and it turns out that the partial картинка 420‐test ( картинка 421, картинка 422) supports that the simpler model fits well enough compared to the more complicated model to be preferred (although voter turnout is still apparently not important).

Coefficients: Estimate Std.Error t val P(>|t|) VIF (Intercept) 1.157e+00 2.54e+00 0.46 0.651 Bush.pct.2000 1.633e-01 3.67e-02 4.46 3.7e-05 1.55 *** e.Voting 1.272e+01 4.20e+00 3.03 0.004 41.25 ** Bush.2000 X e.Voting -2.297e-01 7.53e-02 -3.05 0.003 38.25 ** Change.turnout -1.223e-05 1.36e-05 -0.90 0.370 2.44 Median.income -1.718e-04 5.57e-05 -3.08 0.003 1.65 ** Hispan.pop.pct -4.892e-02 2.94e-02 -1.66 0.102 1.14 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 2.233 on 60 degrees of freedom Multiple R-squared: 0.4585, Adjusted R-squared: 0.4044 F-statistic: 8.468 on 6 and 60 DF, p-value: 1.145e-06

Residual plots given in Figure 2.7do not indicate any obvious problems, although the potential nonconstant variance related to whether a county used electronic voting or not noted in Figure 2.4is still indicated. We will not address that issue here, but correction of nonconstant variance related to subgroups in the data will be discussed in Section 6.3.3.

FIGURE 27 Residual plots for the 2004 election data 25 Summary In this - фото 423

FIGURE 2.7: Residual plots for the 2004 election data.

2.5 Summary

In this chapter, we have discussed various issues related to model building and model selection. Such methods are important because both underfitting (not including variables that are needed) and overfitting (including variables that are not needed) lead to problems in interpreting the results of regression analyses and making predictions using fitted regression models. Hypothesis tests provide one tool for model building through formal comparisons of models. If one model is a special case of another, defined through a linear restriction, then a partial картинка 424‐statistic provides a test of whether the more complex model provides significantly more predictive power than does the simpler one. One important example of a partial картинка 425‐test is the standard картинка 426‐test for the significance of a slope coefficient. Another important use of partial картинка 427‐tests is in the construction of models for data where observations fall into two distinct subgroups that allow for common (pooled) relationships over groups, constant shift relationships that differ only in level but not in slopes, and completely distinct and different relationships across groups.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Regression Analysis With Applications in R»

Представляем Вашему вниманию похожие книги на «Handbook of Regression Analysis With Applications in R» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Regression Analysis With Applications in R»

Обсуждение, отзывы о книге «Handbook of Regression Analysis With Applications in R» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x